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Preface

Data science is a rapidly growing field that combines statistical analysis, machine
learning, and computational thinking to extract meaningful insights from data. As
more and more data becomes available in our increasingly digital world, effectively
harnessing and analyzing this data is becoming an essential skill for students and
professionals alike.

This book, "Machine Learning: From Scratch to Mastery,” is designed to provide
readers with a solid foundation in the core concepts and techniques of machine
learning. This book assumes readers have a basic familiarity with advanced math-
ematics concepts like calculus and linear algebra, as well as some experience with
Python programming. By building on these foundations, the book is able to dive
deeper into the core machine learning techniques without having to cover the ab-
solute basics from the ground up.

One of the unique aspects of this book is the way it was developed. It was developed
using Al-powered tools, including OpenAl's ChatGPT, Microsoft's Copilot through
Skype, and DeepSeek’s advanced language model. These powerful tools were used
to generate Python scripts for the numerous examples and figures throughout the
book, as well as to assist in the writing of mathematical equations and conceptual
explanations.

This innovative approach dramatically reduced the time required to write the book,
allowing the author to focus on curating the content and ensuring a cohesive and
accessible learning experience for the reader. By leveraging the capabilities of these
Al-powered tools, the author was able to create a comprehensive and up-to-date
resource that covers the essential topics in machine learning, from linear regression
and optimization to advanced algorithms such as transformers.

Whether you are an undergraduate student taking your first machine learning course
or a postgraduate student looking to expand your skills, "Machine Learning: From
Scratch to Mastery' is an invaluable resource that will guide you through the fun-
damental concepts and practical applications of this exciting field. With the help of
ChatGPT, Copilot, and DeepSeek, the author has created a truly unique and acces-
sible learning experience that will empower you to become a confident and capable
data scientist.
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The future of computing is not just
about faster machines, but smarter
ones.

— Claude Shannon

We begin by establishing links between related fields, information theory, and prob-
abilistic modeling. These connections are crucial for understanding various machine
learning techniques. A strong foundation in these concepts will help in explaining
advanced models. One such example is diffusion models, which rely on probabilistic
principles. Understanding these relationships is essential for grasping their math-
ematical formulation.

1.1 Fundamental Mathematical Elements

In this section, we present and define fundamental mathematical elements, including
scalars, vectors, matrices, and tensors. Each of these mathematical elements is an
abstraction that helps describe physical quantities and relationships.

1. Scalar: A scalar is a single number, often representing a quantity that has
magnitude but no direction. Scalars are used to measure quantities such as
temperature, mass, or time.

- Example: Temperature at a point, T =25 °C.
- Mathematical Notation: Scalars are typically denoted by lowercase or up-
percase letters, e.g, a, b, c.

2. Vector: A vector is an ordered list of numbers that represents a quantity with
both magnitude and direction. Vectors are often visualized as arrows in space,
with the length representing the magnitude and the direction representing its
orientation.
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- Example: Velocity in 3D space, v = (v, vy, V).
- Mathematical Notation: A vector is usually represented as a bold letter or
with an arrow above, eg., v.

3. Matrix: A matrix is a rectangular array of numbers arranged in rows and
columns. Matrices are used to represent linear transformations, systems of
linear equations, and more.

- Example: A 2x2 matrix representing a linear transformation in 2D space.

apn a
A |01 a2
az ax
- Mathematical Notation: Matrices are typically represented by uppercase
bold letters, e.g., A, B.

4. Tensor: A tensor is a more general mathematical object that can be thought
of as a multi-dimensional array of numbers. Tensors extend scalars, vectors,
and matrices to higher dimensions and are used extensively in physics, engi-
neering, and machine learning.

- Example: A rank-3 tensor in 3D space.

T=[tyx] k=123

- Mathematical Notation: Tensors are usually denoted with calligraphic let-
ters or bold, uppercase letters, e.g, T, T.

- A scalar can be seen as a tensor of rank 0.

- A vector is a tensor of rank 1.

- A matrix is a tensor of rank 2.

- Higher-rank tensors (rank 3 and above) represent more complex relation-
ships. For example, a rank-3 tensor can be used to represent the stress or
strain in a material in physics.

1.2 Information Theory for Machine Learning

Certain Probablistic modeling techniques incorporate concepts from information the-
ory. Hence, basic elements of information theory are introduced (for details see
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[1, 2, 3]). In his landmark paper [4] Shannon introduced a quantitative measure
of information known as entropy. For a discrete random variable s takes values
$1,S2,...,S, with the corresponding probabilities P(s1), P(s2), ..., P(s,), the en-
tropy is defined as

S(s) 2 — Z P(s) log P(s;) (1.1)
i=1

The entropy is a measure of the average uncertainty of a random variable and
—log P(s;) is the amount of information gained by observing the event s;. Events s;
with low probabilities produce more information than the events with large probabil-
ittes. Hence, rare events produce more information or surprise than frequent events
and this is the basic idea behind compression algorithms. The entropy has large
values when all s; have same probability. The entropy is measured in nats when
the natural logarithm is used in Equation 1.1 to measure the information conveyed
by a random variable or in bits when base 2 logarithm is used.

Similarly, the conditional entropy is the uncertainty in a random variable s given
another random variable o and it is given by

S(slo) £ —> P(s,o0)log P(s|o) (1.2)

S,0

The average mutual information is defined as the difference between S(s) and S(s|o)
as shown in Equation 1.3. It is a measure of average reduction in uncertainly about s
after observing o. The mutual information is symmetric /(s; 0) = /(o;s) and is always
nonnegative.

I(s;0) £ S(s) — S(s|o)

5 P(s, o) (1.3)
—g/ (s,o)[ogw

Relative entropy or the Kullback-Leibler (KL) divergence between two probability
distributions P and Q of a discrete random variable is given by
A P(s)
DL(PI|Q) £ ) P(s)log =~ (1.4)
. 0ls)
DkL(P]|Q) is the information loss when Q is used to approximate P. KL divergence
is nonsymmetric (te. KL(P||Q) # KL(Q||P)) and Dk (P]|Q) > 0. When the distri-
butions P and Q are identical, Dk (P||Q) is exactly zero. The mutual information
is the KL divergence between the joint distribution P(s, o) and the product of P(o)
and P(s) distributions.

In probablistic machine learning, Q = Pa is an hypothesized model that has free
parameters A. The goal of the training process is to minimize the information loss
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in terms of KL divergence between the training data distribution' P and its hypoth-
esized model Pp (i.e. Dk (P||Pa) is minimum). Hence, A* is given by

N = arg mm{D|<L(/5H/5/\)}
algmm{ZP s)log P(s) ZP s)log Ph(s)}

= arg mi D 5}
1|gm/{n{5( Z/ s)log Pa(s)}

(1.5)

_ o D D = ar ; D P
c><a|gm/{n{ gl (s)log Pa(s)} mgmAm{S(P,/A)}

where S(P, Py) is defined as the cross entropy between two distribution P and
Py and the term S(P) is ignored because it is independent of A. As a result, the
minimization of S(P, Px) and D|<|_(/5||/5A) are equivalent. The minimization of the
cross entropy between a data model and an hypothesized model is equivalent to
the maximization of the log likelihood objective function, which is given by

A* = arg max L(P, Py\) = arg max Z P(s)log Pn(s)
~ (1.6
= argmax —S(P, Py)

Hence, minimization of KL objective function between a data model and an hypoth-
esized model is related the maximum likelihood estimation (MLE) between the two
models. Similarly, maximizing the mutual information can be re-cast as minimiz-
ing the cross entropy between a data model and an hypothesized model [5]. We
will examine the cross-entropy loss function, a key training objective used in bi-
nary classification (Chapter 5), multiclass classification (Chapter 6), and multilabel
classification (Chapter 7) scenarios.

1.2.1 Variational Lower Bound (ELBO)

The ELBO (Evidence Lower Bound)’ is another objective function we introduce. It
is widely employed in statistical learning to approximate intractable probabilities,
particularly in variational autoencoders (VAEs) [6] and diffusion models [7, 8, 9].
Given a latent variable model with observed data x and latent variable Z, the
marginal likelihood is:

p(x) = //J(X,Z)C/Z (1.7)

A true distribution P that generates a data set is usually not known and is replaced with an
empirical distribution P observed from the stochastic process.
2https://xgang35Ag‘Lthubio/201 7/04/14/variational-lower-bound/
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— f(x) =x? /

Secant Line
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flx1) + fixa)
2

f(x)
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Figure 1.1: Jensen's inequality for a convex function. The plot shows how the secant

line of a convex function lies above the curve between any two points, with annota-

tions highlighting the inequality at the midpoint f (*52) < f(X”Jer(XZ)‘

Since direct computation of p(x) is often intractable, we introduce an approximate
posterior distribution g(Z). Applying Jensen's inequality f (E[x]) < E[f(x)] for the
concave log function (see Figure 1.1), we start with:

log p(x) = log / p(x, 2)
7

q(2)
= log/Zp(X,Z)q(Z)

Z

-tog (2| 207 "
p(x, Z)]

q(2)

= Eq[log p(x, 2)] + HZ],

> E, [log

where H|Z] = —E[log g(Z)] is the Shannon entropy. Hence,
£(q) = Eq [log plx, 2)] + HIZ] (19)

It is evident that £(g) serves as a lower bound on the log-likelihood of the observed
data. Consequently, when aiming to maximize the marginal likelihood, we can
equivalently focus on optimizing this variational lower bound L(q).
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The Kullback-Leibler divergence can alternatively used to drive the ELBO. The KL
divergence between g(Z) and p(Z]x) is:

/
KLigZ)Ip(Z)x)] = fz 4(2)log -12)

|
|
NI
Q
N
o
=)
N

- — (/ZC/(Z) log péx,ZZ) _[Zq(z) [ogp(x)) (1.10)
)

- plx,Z N
- /Zq(Z)log o) + log p( )/Zq(Z)
= —L(q) +logp(x)

Rearrange the terms:
L(q) = log p(x) = KL[q(Z)[|p(Z]x)] (1.11)
Since KL divergence is always non-negative, we conclude:

logp(Z) > L(q) (1.12)

which confirms that ELBO provides a lower bound on the log-marginal likelthood.
Hence, maximizing ELBO indirectly maximizes the data likelthood p(x). Moreover,
the KL divergence ensures that the approximate g(Z) is close to p(Z]x).






| never failed in mathematics.
Before | was fifteen | had mastered
differential and integral calculus.

— Albert Einstein

Cradient-based optimization is an essential tool for the field of machine learning.
This chapter addresses the basic elements of calculus used to understand gradient-
based methods such as gradient descent.

2.1 Convex Functions

A function f(x) is convex if the line segment between any two points on the graph of
the function lies above or on the graph. Mathematically, for x1, x» € Rand A € [0,1]:

Fr + (1= A)xa) < Af(a) + (1 = f(x)

To illustrate the formal definition of a convex function, we can create a plot showing
a convex function f(x) = x? and a line segment connecting two points (x1, f(x1)) and
(x2, f(x2)) as shown in Figure 2.1. The convexity condition states that the function
value at any convex combination of x; and x, is less than or equal to the corre-
sponding convex combination of f(x1) and f(x2). Examples of convex functions are
the quadratic function f(x) = x? and the exponential function f(x) = e*.

A function f(x) is non-convex if there exists at least one line segment between
two points on the graph of the function that lies below the graph. It violates the
convexity condition as shown in Figure 2.2. Examples of non-convex functions are
cosine function f(x) = cos(x) and the quartic function with multiple minima f(x) =
xt —4x? 4 3.
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Figure 2.1: Illustration of the convex function definition. The blue curve represents
f(x) = x?, which is convex. The green dashed line connects the points (x1, f(x1)) and
(x2, f(x2)). The purple points represent f(Ax1 + (1 — A)x2), which lie below or on the
green line segment, satisfying the convexity condition.

2.2 Derivative

The derivative in calculus is a way of measuring the rate of change of a function at
a certain point. It can also be interpreted as the slope of the line that is tangent to
the function’s curve at that point. The derivative of a function f(x) can be denoted
by f'(x) or d;g(x), where x is the input variable!. The derivative mathematically can
be defined as follows:

df(x) ,
f'(x) = =
) dx lgt—njo h

(2.1)

if the limit exists. A function is not differentiable at a point if it is not continuous at
that point. For example, the function f(x) = |x| is not continuous at x = 0, so it has
no derivative there.

A partial derivative is a derivative of a function of several variables with respect to one of those
variables, while keeping the others constant. For example, if f(x1, x2)is a function of x; and x;, then the
partial derivative of f with respect to x; is denoted by % and it is obtained by differentiating f with
respect to x; and treating x, as a constant. Similarly, the partial derivative of f with respect to x; is
denoted by % and it is obtained by differentiating f with respect to x, and treating x; as a constant.
Partial derivatives are used to measure the rate of change of a function along a specific direction or
axis
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T
— f(x)=x*-4x2+3
® Points on f(x)
——- Line segment
6 e Non-convex combination

f(x)

Figure 2.2: The plot shows curve with multiple local minima and maxima for the
function (f(x) = x* — 4x? + 3), illustrating non-convexity.

Most machine learning algorithms are formulated as a minimization of a loss or
objective function with respect to certain variables. To find a minimum of a function,
there are different methods depending on the type and complexity of the function.
Some of the common methods are:

e Sketching the function: This method involves plotting the graph of the function
and visually identifying the lowest point on the graph. For example, the one-
variable quadratic function has one global minimum? at x = 1:

flx) = (x —1)° (2.2)

where it is easy to find the minimum by inspecting the plot. However, this
method is useful for simple functions that can be easily graphed, but it may
not be accurate or feasible for more complicated functions.

e Finding analytical solution: This method involves using calculus to find the
derivative of the function and setting it equal to zero. This gives the critical
points of the function, where the slope is zero or undefined. Figure 2.4 shows

2The difference between local and global minimum of a function is that a local minimum is the
point where the function value is smaller than (or equal to) the function values at nearby points, while
a global minimum is the point where the function value is the smallest among all points in the domain.
A function can have multiple local minima, but only one global minimum.
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Figure 2.3: A plot of a simple quadratic function has a global minimum.

graphically why we set the first derivative to zero where the slope at the
maximum and minimum is a horizontal line (i.e. the slope is zero).

Then, using the second derivative test or the first derivative test, we can
determine which critical points are local minima, local maxima, or neither. To
find the minimum of the quadratic function in Equation (2.2), we differentiate
it with respect to x and set the derivative to zero as follows (ie. using the
power rule):

f'lix)=2(x—=1=0 (2.3)

Hence, the minimum happens at x = 1. In practice, this method for finding the
minimum of a function does not scale well with the amount of training data
commonly seen in machine learning problems.

e Using gradient descent method: The gradient descent method is an iterative
optimization algorithm that is used to find the minimum of a function by moving
in the opposite direction of the gradient (or the slope) of the function at each
point. This method will be detailed in the next section.

2.3 Gradient Descent

The gradient descent method involves starting from an initial guess and iteratively
updating it by moving in the opposite direction of the gradient (the vector of partial
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Figure 2.4: The slope at the maximum and minimum is a horizontal line (ie. the
slope is zero).

derivatives) of the function. The gradient gives the direction of steepest ascent, so
moving against it will lead to a descent. The step size is determined by a learning
rate parameter that controls how fast or slow the algorithm converges. This method
is useful for finding a local minimum of a function that may not have an analytical
solution or may be too complex to solve by calculus. However, this method does
not guarantee finding the global minimum of the function, and it may depend on the
choice of initial guess and learning rate.

The gradient descent method works as follows (assuming the function has one vari-
able only):

1. Start with an initial guess x = x% for the parameters of the function that need
to be optimized.

2. Calculate the gradient of the function with respect to the parameters at the

current point g(x) = dg,(xx) |-

3. Update the parameters by subtracting a fraction of the gradient from the cur-
rent values. The fraction is called the learning rate and it controls how big or
small the steps are.

X1 = 0 _ ng(x) (2.4)

where n > 0 is the learning rate. When the gradient is positive (ascending),
it means that the function is increasing in that direction. Therefore, we move
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against the gradient direction to find a lower point on the function, aiming to
eventually reach a local minimum. Similarly, when the gradient is negative
(descending), it means the function is already decreasing in that direction,
but we still move against the gradient to continue finding a lower point and
approach the local minimum. This way, we hope to eventually reach a local
minimum of the function as well. This behavior is shown in Figure 2.5. In the
next section, we show mathematically why we need to subtract a fraction of
the gradient from the current values.

30

— y=(x-1)"2
—=- Gradientlineatx =5
—=—=- Gradient line at x = -3

25 A

20 A

15 A

Figure 25: Function plot with gradient lines (ascending at x = 5 and descending
at x = —3) and arrows pointing towards the minimum.

4. Repeat steps 2 and 3 until the gradient is close to zero or a maximum number
of iterations is reached.

The gradient descent method is widely used in machine learning to train models by
minimizing a loss function that measures the difference between the predicted and
actual outputs. The gradient descent method can be applied to different types of
functions, such as linear, quadratic, or non-linear functions. There are also different
variants of the gradient descent method, such as batch gradient descent, stochastic
gradient descent, mini-batch gradient descent, and momentum gradient descent, that
differ in how they calculate and update the gradients.
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231 Examples

In this subsection, | will use Python code to illustrate how the gradient descent
algorithm works and how it can be applied to different functions of one variable or
two variables.

The gradient descent algorithm is a method to find the minimum of a function by
taking small steps in the direction of the steepest decrease. To apply this algorithm
to the function f(x) = (x — 1)?, we need to first find its derivative, which is g(x) =
2(x—1). The algorithm starts with an initial guess for x =3, and computes the value
of g(x) at x = 3. Then it updates x by subtracting an ng(x) from it. This gives a
new value for x that is closer to the minimum of the function. The algorithm repeats
this process until it converges to a value of x that makes g(x) very close to zero or
a maximum number of epochs is reached. This value of x = 1 is the minimum of the
quadratic function f(x) = (x — 1)2. The described algorithm can be implemented as
a Python code as follows:

def grad(x):
return 2.0 * (x-1.0)

X =

 w

.0
eta 0.001

epochs = 50000
for i in range(epochs):
x -= eta * grad(x)

print (x)

Listing 2.1: Python example for finding the minimum of a quadratic function in one
variable.

On the other hand, we can use two different learning rates ny1, Ny for the function
f(x1,x2) = (x1 —2)> + 10 % (x2 + 3)? because the function has different scales and
curvatures along the x1 and x2 directions. If we use a single learning rate for both
variables (e.g. ny1 = nx2 = 0.1), we might encounter a convergence problem. By
using different learning rates for each variable ny; = 0.1 and ny, = 0.05, we can
adjust the step size according to the shape of the function and find the minimum
more efficiently and accurately’. A Python implementation to find the minimum of
this function is:

#Define the function of two variables

def f(x1, x2):
return (x1 - 2)**2 + 10.0 * ((x2 + 3)*x%x2)

#Define the partial derivatives of the function
def df_dx1(x1, x2):

3You can play with the learning rates to study the convergence properties.
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return 2 * (x1 - 2)

def df_dx2(x1, x2):
return 20.0 * (x2 + 3)

#Define the learning rates for each variable
eta_x1 = 0.1 # Learning rate for x1
eta_x2 = 0.05 # Learning rate for x2

#Define the initial values for x1 and x2
x1 = 0.0
x2 = 0.0

#Define the tolerance for convergence
epsilon = 0.000001

#Define a variable to store the previous value of the function
prev_f = f(xl, x2)

#Start the gradient descent loop
steps = 0
while True:
steps += 1
#Update x1 and x2 using the gradient and the learning rates
x1 = x1 - eta_x1 * df_dx1(x1l, x2)
x2 = x2 - eta_x2 * df_dx2(x1l, x2)

#Compute the current value of the function
curr_f = f(x1, x2)

#Check if the function value has decreased sufficiently
if abs(curr_f - prev_f) < epsilon:
break # Exit the loop

#Update the previous value of the function
prev_f = curr_f£

#Print the final values of x1 and x2 and the minimum value of the
function

print ("x1 =", x1)

print ("x2 =", x2)

print ("f(x1, x2) =", curr_f)

print ("steps for convergence =", steps)

Listing 2.2: Python example for finding the minimum of a quadratic function in two

variables.

The adaptive learning rate is a technique that adjusts the learning rate dynamically
based on the progress of the gradient descent algorithm. The idea is to use a larger
learning rate when the function is far from the minimum and a smaller learning
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rate when the function is close to the minimum. This way, we can speed up the
convergence and avoid overshooting or oscillating. One method to implement the
adaptive learning rate is to use the Hessian matrix, which is the matrix of second-
order partial derivatives of the function. The Hessian matrix captures the curvature
of the function and can be used to scale the gradient vector according to the shape
of the function. By using the inverse of the Hessian matrix as a multiplier for
the gradient vector, we can obtain a more accurate direction and step size for
each iteration of the gradient descent algorithm. The next section will detail these
techniques.

2.4 Gradient Descent using Taylor’s Series

In mathematics, Taylor's series can be used to make a first-order approximation to
a scalar loss function f(x) around the current point vector x!! € R given the first
derivative of the function at that point:

Fix ) = F(x) 4 (xEFD —x(0) T g, (2.5)
where g is the gradient vector at the point x(). It can be written as well as follows:

f(x(t) +AX) ~ f(x(t)) + AXTg, (2.0)

where Ax = x" — x() In order to decrease the loss function f(x{!) + Ax), the term

Ax'g has to be a negative value. Hence,
Ax'g <0 (2.7)

Let's consider the cosine of angle between the two vectors Ax’ and g

Ax'g
c0s 0 = ———— (2.8)
|AxT]|g]
cos O lies between —1 and 1 te. —1 < cos 8 < +1 . Hence,
—[Ax"|g| < Ax"g < [AxT]|g] (29)

Now we want the dot product to be as negative as possible (so that loss can be as
low as possible). We can set the dot product to be —|Ax"||g| where cos6 has to be
equal to -1 corresponds to 8 = 180°. Therefore,

Ax = —g (2.10)

This result explains why we move in the opposite direction of the gradient as we
described in Section 2.3.
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Intuitively, since the first-order approximation is good only for small Ax, we want to
choose a small n > 0 to make Ax small in magnitude. n is called the learning rate.

Hence,
Ax = —ng (2.11)

2.5 Gradient Descent Limitations

The gradient of a function at a specific point represents the direction of the steepest
descent of the function at that point. In other words, it points in the direction in
which the function decreases most rapidly. On the other hand, the contours® of a
function are curves along which the function has the same value, so there is no
change in the function value as you move along the contour.

Since the gradient points in the direction of maximum decrease, it is orthogonal
(perpendicular) to the direction along which there is no change in the function
value, which is the contour. This is true for any scalar function.

One limitation of the gradient descent is the zigzag effect. The zigzag effect occurs
because the gradient at each point points in the direction of the steepest descent
when moving downhill and may not necessarily point directly toward the minimum.
As the algorithm moves along the steepest slope, it overshoots the direction of the
minimum, and in the next step, it must correct its course. This leads to a back-and-
forth zigzagging pattern as the algorithm iteratively converges to the minimum as
shown in Figure 2.6. This zigzag effect slows down the convergence of the algorithm.
Zigzag effect of gradient descent does not happen for the loss functions that have
circular contours or equal curvature in all dimensions or directions. For example, a
function like f(x, y) = x* + y? has circular contours and does not have zigzag effect.
A straight line to the minimum for these functions is followed by gradient descent
as shown in Figure 2.7.

Hessian-based optimization methods, like Newton's method or Quasi-Newton meth-
ods (such as BFGS and L-BFGS), make use of second-order information to help guide
the optimization process more effectively [10]. They use the Hessian matrix or its
approximation to adjust the step size and direction, which can reduce the zigzag-
ging effect and potentially lead to faster convergence. Using Taylor’s expansion, the
second-order approximation is given by

1
f(x) = F(x) 4+ (x —x) g + 5= x)TH(x — x1y, (2.12)

where H is the Hessian matrix at the point x(!). The local Hessian matrix is a

A contour of a function (e.g. Rosenbrock function) is a curve connecting points with the same
function value. A contour is defined mathematically as the set of points (x, y) such that f(x,y) = c,
where ¢ is a constant.
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Figure 2.6: The zigzag effect of the gradient descent algorithm.

symmetric matrix and is defined by

af(x)
= 213
0x[6xj ‘Xm ( )
%1 (x) 921 (x)
ox7 0x10x2
_ | 9y 9*(¥)
H= Oxzd):q ax§X o (2.14)

The basic idea of Newton's method is to minimize the quadratic approximation of
the cost function f(x) around the current point x!). Equation (2.12) can be rewritten
as follows:

AF(x9) = f(x) — F(x)) = Ax" g + %AXTHAX (2.15)

Differentiating the above equation with respect Ax and setting the output to zero to
get the minimum:

g+ HAx =0, (2.16)
Hence, the Newton's update rule is given by
Ax = —nH g (2.17)

When the matrix H equals to the identity matrix® (i.e. taking the same step in each
direction), we reach the gradient descent update rule described in Equation (2.11).

SAn identity matrix is a square matrix in which all the elements of the principal diagonal are ones
and all other elements are zero.
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—8— Gradient Descent Path

Figure 2.7: The zigzag effect of the gradient descent algorithm does not happen for
the functions that have circular contours.

It's important to note that while Hessian-based methods can help overcome the
zigzaqging effect, they often come with their own challenges, such as increased com-
putational complexity and the need to compute or approximate the Hessian matrix.
In practice, these trade-offs need to be considered when selecting an optimization
algorithm for a particular problem [11].

Adaptive learning rate methods overcome the zigzag effect in the gradient descent
algorithm as well. They are addressed in the next subsection.

2.5.1 Adaptive learning Rate

Adaptive learning rate methods overcome the zigzag effect in gradient descent by ad-
justing the learning rate for each parameter during the optimization process. These
methods take into account the history of gradients, the magnitude of the gradients,
or both, to determine an appropriate learning rate for each parameter. As a result,
adaptive learning rate methods can effectively navigate the loss surface and reduce
oscillations and zigzagging.

Some popular adaptive learning rate methods include:

e Momentum: Momentum can reduce the zigzag problem by accumulating a
vector that smooths out the gradient updates and aligns them with a consistent
direction. Hence, it converges faster and more reliably than the gradient
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descent [12]. The momentum with gradient descent algorithm updates the
parameters x as follows:

m = gm'™=1 4 (1 — B)g" (2.18)

xUH = x0 — 0 (2.19)

where gl is the gradient of the loss function at time step t, m) is the vector
that accumulates the past gradients, 8 is the momentum coefficient, and n is
the learning rate.

AdaGrad: AdaGrad accumulates the squared gradients for each parameter in
a diagonal matrix and uses this information to adapt the learning rate for each
parameter. Parameters with larger accumulated squared gradients have their
learning rate reduced, while those with smaller accumulated squared gra-
dients have their learning rate increased. This makes AdaCrad well-suited
for problems with sparse gradients or features that occur with varying fre-
quency [13]. The AdaCGrad algorithm updates the variables x as follows:

t) t—1)

VO = =0 g0 gl (2.20)

I

() SN S R (2.21)
Vvl + e

where g'! is the gradient of the loss function at time step t, v!) is the sum of

the squares of the gradients up to time step t, n is the learning rate, and € is

a small constant to prevent division by zero

(t (t

RMSprop: RMSprop is an improvement over Adagrad that uses an exponen-
tially decaying average of the squared gradients instead of the cumulative
sum. This makes RMSprop more robust to situations where the accumulated
squared gradients can grow indefinitely, causing the learning rate to shrink
too much [14]. The RMSprop algorithm updates the variables x as follows:

0 = Bult=1) (1 — g)glt) g1 (2.22)

(t
(1) (0 _ 9 273

X = X n .
Vvl + e 22)

where g!¥) is the gradient of the loss function at time step t, v{') is the estimate
of the second moment of the gradients, S is the decay rate for the moment, n
is the learning rate, and € is a small constant to prevent division by zero.
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e Adam: Adam combines the ideas of RMSprop and momentum-based meth-
ods. It computes the first moment (mean) and the second moment (uncentered
variance) of the gradients, and uses these moments to adapt the learning rate
for each parameter. This helps Adam to navigate the loss surface more effec-
tively, reducing zigzagging and achieving faster convergence [15]. The Adam
algorithm updates the variables x as follows:

m® = Bym!=1 + (1 — By)g" (2.24)
= B0 4 (1= By)g g1 (2.25)
(t
Hlo M (2.26)
m = .
1—-B
(t
ol = Y (2.27)
o .
-8
o / M
1) — (0 (2.28)

Comn
00 + e

where ¢! is the gradient of the loss function at time step t, m!) and vt
are the estimates of the first and second moments of the gradients, M and
Pt) are the bias-corrected estimates®, B1 and B, are the decay rates for the
moments, n is the learning rate, and € is a small constant to prevent division by
zero. Although the Adam algorithm is the state-of-the-art learning algorithm,
the algorithms suffer from worse generalization” performance than stochastic
gradient descent despite their faster training speed [16]. Hence, a practical
recipe for training is to start with Adam for a few epochs and then switch to
the gradient descent algorithm. In addition, the Adam algorithm accumulates
two statistics for each variable or parameter during the optimization process.

2.6 Assignment

Using Adam algorithm, find the minimum of the function f(x1,x2) = (x1 —2)? + 10 %
(x2 + 3)%.

5The Adam algorithm suffers from a bias problem due to the initialization of the first and second
moment estimates at zero. This means that the algorithm tends to underestimate the true values of
these moments at the beginning of the training, leading to inaccurate gradient updates. To overcome
this problem, the Adam algorithm uses a bias correction term that divides each moment estimate by
a factor that accounts for the decay rates of the moments. This way, the algorithm can adjust for the
bias and converge faster and more reliably.

"The generalization is measured using the test set performance.






Computer programs usually operate
on tables of information. In most
cases these tables are not simply
amorphous masses of numerical
values, they involve important
structural relationship between the
data elements.

— Donald Ervin Knuth

Most types of data, including tabular data, text, speech, and images, can be formatted
for computer processing. In this chapter, we discuss various methods for representing
these different types of data.

3.1 Tabular Data Representation

Tabular data refers to data that is organized into rows and columns, making it easy
to read and analyze. Each row in a table represents a record or an instance, while
each column represents a specific attribute or feature of the data. This structure is
common in databases, spreadsheets, and many machine learning applications.

In the context of machine learning, particularly with feedforward neural networks’,
tabular data is used to train models by feeding structured data into the network. The
table is often converted into a format suitable for processing by the neural networks,
typically by normalizing or encoding categorical variables. The key elements of
tabular data are:

1. Rows: Each row represents a single observation or data point. For example,
in a dataset of customer information, each row might represent a different
customer.

2. Columns: Each column represents a feature or attribute of the data. For
instance, columns might include customer age, income, and purchase history.
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Table 3.1: Raw customer data.

Customer ID | Age | Income ($) | Gender | Purchased (Yes/No)
001 25 50000 Male Yes
002 32 60000 Female No
003 45 75000 Female Yes
004 29 55000 Male No
005 39 80000 Female Yes

3. Headers: The first row often contains the column names, which describe the
attributes of the data.

4. Data Types: Columns can have different data types, such as numerical, cate-
gorical, or boolean.

5. Missing Values: Sometimes, data might be missing or incomplete, and han-
dling these missing values is a crucial step in preprocessing.

Table 3.1 is an example of a simple table that might be used as input for a feedforward
neural network. This table represents customer data where each row is a customer
and each column is a feature of the customer.

The input table typically requires preprocessing to transform the data into a nu-
merical format suitable for machine learning algorithms. The common preprocessing
steps are:

1. Normalization: Numerical values such as Age and Income are often normalized
to a range (e.g, 0 to 1) to ensure that all features contribute equally to the
model’s training.

2. Encoding Categorical Data: Categorical variables like Gender and Purchased
are typically converted into numerical format. For instance, ‘Male" might be
encoded as 0 and "Female’ as 1. Similarly, the Purchased column could be
converted to 1 for "Yes" and 0 for "No".

3. Handling Missing Values: If any values are missing, they need to be filled in
or removed. For example, missing Age values could be filled with the average
age or a specific value.

Table 3.2 is the output table after preprocessing. In this preprocessed table, all
features are numeric and scaled, making them suitable for different machine learning
algorithms. Each feature is now on a comparable scale, and categorical variables
have been encoded into numerical values.
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Table 3.2: Preprocessed customer data.

Customer ID Age Income Gender Purchased
(Normalized) | (Normalized) | (Male=0, Female=1) | (Yes=1, No=0)
001 0.25 0.50 0 1
002 0.32 0.60 1 0
003 0.45 0.75 1 1
004 0.29 0.55 0 0
005 0.39 0.80 1 1

3.2 Text Representation

Text representation involves converting raw text into numerical data that a machine
learning model can understand. Tokenization is a crucial step in this process, as
it breaks down the text into smaller units called tokens. These tokens are then
converted into numerical representations (embeddings) through an embedding layer.

3.2.1 Word Tokenization

Word tokenization splits the text into individual words based on spaces and punc-
tuation. Consider the sentence:

‘Machine learning is fun!’
The word tokenization result is:
[Machine', 'learning’, is’, "fun’, "'l

Each word (including punctuation) is treated as a separate token.

After tokenization, each word is mapped to a unique numerical vector using an
embedding layer. An embedding layer is a matrix' W € RY*? where V is the
size of the vocabulary (number of unique tokens) and d is the embedding dimension
(number of features in each token's vector). The embedding layer transforms each
token t; into its corresponding vector e; using the embedding matrix. If ¢; corresponds
to the index j in the vocabulary, the embedding for ¢; is the j-th row of the embedding
matrix. For example, if the embedding dimension is 4, a sample embedding matrix
is shown in Table 3.3. Hence, the numerical representation (i.e. embedded text) of
the given sentence is:

"The matrix can be learned using training data.



32. TEXT REPRESENTATION

Table 3.3: Word Tokens and their corresponding embedding vectors.

Word Token | Embedding Vector
"Machine" [0.1, 0.3, 0.5, 0.2]
"learning" | [0.4, 0.6, 0.7, 0.1]
"is" [0.9, 0.8, 0.4, 0.3]
"fun" [0.2, 0.1, 0.3, 0.7]
e [0.6, 0.4, 0.9, 0.5]
[0.1,0.3,0.5,0.2]
[0.4,0.6,0.7,0.1]
Embedded Text = [[0.9,0.8,0.4,0.3]
[0.2,0.1,0.3,0.7]
[0.6,0.4,0.9,0.5]

3.2.2 Character Tokenization

Character tokenization breaks the text down into individual characters, including
spaces and punctuation. For the same example:

‘Machine learning is fun!’
The character tokenization result is:

I:HMH’ Halll "C”I III_]H’ H-llvl III_]H’ Helll n III IIlH’ Helll IIaH’ ”l’”l III_]H’ H-llvl III_]H’ HgH’ i \I’ HnLH’ IVSH’ i \I’ HFII IILIH’ ”l‘]"’ H!\I:I
Hence, each character, including spaces and punctuation, is treated as a separate
token. Each character is then mapped to a numerical vector using an embedding
layer. The vocabulary size is quite limited, being equal to the number of unique
characters in the given language. For example, if the embedding dimension is 4, a

sample embedding matrix is shown in Table 3.4. Hence, the numerical representation
(ie. embedded text) of the given sentence is:

0.2,0.4,0.1,0.8]
0.7,0.2,0.6,0.3]
0.5,0.9,0.2,0.4]

Embedded Text =
3.2.3 WordPiece Tokenization

WordPiece tokenization is a subword-based tokenization method used by models
like BERT [17]. It breaks words into smaller units (subwords) that frequently occur
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Table 3.4: The mapping of embeddings for character tokens.

Character Token | Embedding Vector
M (02,04, 0.1, 0.8]
a [0.7,0.2, 0.6, 0.3]
c (0.5, 0.9, 0.2, 0.4
h (01,07, 0.3, 0.9]
i (0.8, 0.1, 0.4, 0.5]

Table 3.5: Subword Tokens and their Embeddings.

Subword Token | Embedding Vector
Un (0.1, 05, 0.3, 0.2]
##bel [0.4,0.7, 0.2, 0.6]
##iev (03,02, 08, 0.9]
##able (0.9, 0.1, 0.4, 0.5]
! [0.6,04, 0.7, 0.1]

in the text. This is especially useful for handling out-of-vocabulary (OOV) words.
For example, the sentence

‘Unbelievable!"
The wordPiece tokenization result is:
[Un', "##bel', '##ieV, '##able’, "'

Here, "Unbelievable!" is broken down into subwords: "Un’, 'bel’, "ieV', "able’, with "##'
indicating that the subword is part of a larger word. Each subword token is mapped
to an embedding vector. For example, if the embedding dimension is 4, a sample
embedding matrix is shown in Table 3.5. Hence, the numerical representation (i.e.
embedded text) of the given sentence is:

[0.1,0.5,0.3,0.2]
0.4,0.7,0.2,0.6]
Embedded Text = {[0.3,0.2,0.8,0.9]
0.9,0.1,0.4,0.5]
[0.6,0.4,0.7,0.1]

In short, word tokenization divides text into individual words, with the embedding
layer transforming each word into a vector. In addition, character tokenization breaks
text into individual characters, with the embedding layer converting each character
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into a vector. Moreover, wordpiece tokenization segments words into smaller sub-
words, with the embedding layer encoding each subword as a vector. Hence, these
tokenization methods and the embedding layer transform text into numerical values
that can be fed into machine learning models.

3.3 Speech Representation

Speech signal processing assumes the speech signal is a piecewise stationary sig-
nal. As a result, a pre-processor converts the speech signal into a sequence of speech
frames or acoustic observations using short time signal analysis. Typically, these
frames are calculated every 10-20ms from 20-30ms windows of speech. Speech
frames of these lengths are short enough that the estimated parameters can be
assumed constant within each frame.

The perceptually motivated front end processing based on Mel filter bank (MFBANK)
features and Mel-Frequency Cepstral Coefficients (MFCCs) [18] are the most widely
used for speech recognition’ and synthesis tasks. They are widely used in speech
and audio processing to represent the short-term power spectrum of a sound signal.
The output representation is a matrix of dimensions T x d, where T denotes the
number of frames and d represents the number of features per frame. The steps to
calculate MFBANK/MFCCs from an audio signal are as follows:

1. Analog to digital conversion (sampling):

Sampling is the process of measuring the amplitude of the analog signal at
regular intervals in time. These intervals are determined by the sampling rate,
fs , which is the number of samples per second (measured in Hertz, Hz). The
sampling time intervals are:

th=n-1Ts, (3.1)

where T5 = ;— is the sampling period, fs is the sampling rate, and n is the
S
index of the sample. The sampled signal is given by:

x[n] = x(tn), (3.2)

where x(t,) represents the value of the analog signal x(t) at the time t,.

’Feature extraction for speech recognition problems aims to find the intrinsic information related
to vocal tract shape, which may be considered invariant among all speakers (i.e. invariant acoustic
space). A feature vector extracted from a frame contains a set of independent features representing
the envelope of the speech spectrum. The basic assumption behind this idea is that the envelope of
the spectrum is a course representation of the spectrum that has all relevant information related to
the speech recognition problem. In general, the fine spectral structure contains information about the
excitation (i.e. details related to speakers or voicing) in a source-filter speech production model, which
may be a source of noise for speech recognizers [19, 20].
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According to the Nyquist-Shannon Sampling theorem, the sampling rate must
be at least twice the highest frequency present in the analog signal to ac-
curately capture it without aliasing. Example: For a speech signal with a
maximum frequency of 4 kHz, a typical sampling rate would be 8 kHz or
higher.

2. Pre-Emphasis: The first step is to apply a pre-emphasis filter to the signal to
amplify the high frequencies, which often have lower amplitude compared to
lower frequencies. The filter equation is:

y[n] = x[n]— a - x[n —1], (3.3)

where: x[n] is the original signal, y[n] is the pre-emphasized signal, and « is
a pre-emphasis coefficient, typically around 0.97. For example, If the original
signal is x =[1,2,3,4], and a = 0.97, then:

y=1[1,2-097-1,3-097-2,4—-0097-3]=[1,1.03,1.06,1.09]

3. Framing:

The continuous signal is divided into overlapping frames to capture temporal
characteristics. Each frame typically spans 20-40 ms with an overlap of 50%.
There is no specific equation, but conceptually, you can represent it as:

Frame; = x[n + i - hop_size] for n = 0 to frame_size — 1, (3.4)

where i is the frame index, hop_size is the step between successive frames.
For example, a signal x =[1,2,3,4,5,6,7, 8], frame size = 4, and hop size =
2, the frames would be:

Frame; =1[1,2,3,4], Frame, =[3,4,5,6], Frames =[5,06,7,8]

4. Windowing:

Fach frame is multiplied by a window function, typically a Hamming window,
to minimize the signal discontinuities at the beginning and end of each frame.
The equation for windowing is :

y[n} = x{n] - win], (35)

where wln| is the Hamming window function:

27n
=0.54—-0.46 - 36
wln] cos (/\/ — ) (3.6)
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For a frame x =[1, 2,3, 4] and a Hamming window:
w =1[0.08, 0.54, 0.54, 0.08],
y=1[1-0.08,2-054,3-054,4-0.08 =[0.08,1.08,1.62,0.32]

5. Fast Fourier Transform (FFT):

FFT is applied to each windowed frame to convert the time-domain signal into
the frequency domain. FFT is an efficient algorithm to compute the Discrete
Fourier Transform (DFT) of a sequence. The DFT converts the time-domain
signal into its frequency components. For a sequence x[n] of length N, the

DFT is given by:
N—-1

XK= xln]- e /%K, (37)
n=0

where N is the number of points in the FFT, X[k] is the frequency component
at index k, k ranges from 0 to N — 1, and j is the imaginary unit (j = V—1).

Let's break down the application of the Fast Fourier Transform (FFT) to the
given frame x = [1,1.08,1.62,0.32]. This is a sequence of four values repre-
senting a discrete signal:

X = FFT(1,1.08,1.62,0.32) = [4.02, —0.62 — 0.76/,1.22, —0.62 + 0.76/]

Since the frame has 4 elements, the FFT will produce 4 complex values corre-
sponding to the frequency components. For each k (ranging from 0 to 3), the
FFT computes X[k]| as follows:

- X[0]:
X0]=1-e/24108 - e7/04162-e7/04+032. /7

X[0]=1+41.08+1.62+0.32 = 4.02
- X[1]: |
X[1]=1- e 101108 77 +162-7/74+032- 67/&7/7

Let's substitute the values of the exponentials:
X[1]=141.08(—j) + 1.62(—1) + 0.32())

Simplifying:
X[1]=1-1.62+ (—1.08; + 0.32))

X[1] = —0.62 — 0.76;
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- X[2]:
X2l=1-e724108 e /T +162 /274032 e/
Let's substitute the values of the exponentials:
X2]=1-1.08+1.62—-0.32
Simplifying:
X[2]=(1-1.08) + (1.62 — 0.32)
X[2] =—0.08 +1.30 = 1.22
- X[3]:
X3 =1-e794+1.08 /7 +162-e /7 +032 77

Let's substitute the values of the exponentials:
X[3] =1+ 1.08(j) + 1.62(—1) 4+ 0.32(—/)

Simplifying:
X3l =1-1.62+ (1.08j — 0.32))

X[3] = —0.62 + 0.76,

Hence, the resulting frequency components are:
X =[4.02,-0.62 —0.76j,1.22, —0.62 + 0.76/]

These are the complex numbers that represent the magnitude and phase of the
different frequency components in the original signal. X[0] = 4.02 represents
the DC component (frequency 0), representing the average value of the input
signal. The X[1] and X[3] are complex conjugates and represent the positive
and negative frequency components, respectively. This component X[2] = 1.18
represents another frequency in the signal. Each of these complex numbers
can be used to understand the signal's frequency domain characteristics, in-
cluding both magnitude and phase.

. Mel Filter Bank (with Triangular Filters):

The Mel filter bank consists of a series of triangular filters applied to the
power spectrum of the signal to mimic the human ear’s response to different
frequencies. These filters are linearly spaced in the Mel scale but non-linearly
spaced in the frequency domain. The steps to compute the triangular filters:
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e Determine the Frequency Range: Let fyi, and fyax be the minimum and
maximum frequencies in the signal. Convert these frequencies to the Mel
scale using the Mel scale formula:

‘
m(f) = 2595 - logyq (1 + 700)
Convert fin and fhax to Mel scale:

Mmin = m(fmin): Mmax = /77(fma><)
e Determine the Number of Filters: - Decide the number of Mel filters M
you want to use (typically 40-128).

e Equally Spaced Points in Mel Scale: - Calculate M + 2 equally spaced
points between mpin and Mpayx:

Mmax — Mmin .
——— fori=0,1,...,
M +1

e Convert Mel Frequencies Back to Hertz: - Convert the Mel scale points
m; back to frequencies f; using the inverse Mel scale formula:

m; = Mmin+ (-

f, = 700 - (102’5'5’5 —1)

e Determine the FFT Bins: - Map the frequencies f; to the nearest FFT
bin indices k;. The FFT bin k corresponding to frequency f is given by:

| INET)
o[

where N is the FFT size and fs is the sampling frequency.

e Construct the Triangular Filters: Each triangular filter H,, (k) is defined
over three points kj—1, ki, and kp41, corresponding to the lower, center,
and upper frequencies of the filter. The triangular filter is defined as:

0 if kK < k1

k_kmf1 H

(k) k/?_k”771 i kg < k< ki
m —_K i

/<m++11*/<m if kip <k < kg

0 if k> km+1

Essentially, the filter is O before kj,,—1 and after k41, and it linearly rises
from 0 to 1 between kj,—1 and ky,, then linearly falls from 1 to 0 between
km and kn7+1-
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e Compute the Power Spectrum: Let X[k| be the DFT of x[n], then the
power spectrum is given by:

Plk] = | X[K]|? (38)

Here, |X[k]|* represents the magnitude squared of the DFT coefficients.

e Apply Mel filters to the power spectrum: To compute the Mel filter bank
energies, you convolve the power spectrum P[k] with each Mel filter
Hi[m]. In discrete time, this operation can be represented as:

Em =) Plk] Halk], (39)
k

where: £, is the Mel filter bank energy for the m-th filter.

For example, assume fnin = 0 Hz, fox = 8000 Hz, M = 3 filters, N = 512
(FFT size), and fs = 16000 Hz (sampling frequency).

To compute the Mel filter bank energies Fj exactly in the given example,
follow these steps:

- Mel Points: mg =0, my =710, my = 1420, m3 = 2130, m4 = 2840.

- Frequencies: fo =0 Hz, f; = 614 Hz, f, = 1767 Hz, f3 = 3933 Hz, f4 ~ 8000
Hz.

- FFT Bin Indices: kg =0, k1 = 19, ky = 56, k3 =~ 126, k4 ~ 250.

- Construct Triangular Filters: Filter Hy(k) between kg = 0, k4 = 19, and
ko = 56:
0 itk <0
i = 1% T0<k<k
ok ifk <k<k
0 itk >k

Filter Ha(k) between k1 =19, k; = 56, and k3 = 126:

0 if k < ki
k—k .

Hz(k) = /<z—/<11 if ki <k <k
ks3—k lfk2§k£k3

0 itk > ks
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Filter H3(k) between ky = 56, k3 = 126, and k4 = 256:

0 ifk <k

k=l i ko < k < ks

/_/3(/<) _ k3—k>

kimk i kg < k< kg

0 if k> kq

- Compute Mel Filter Bank Energies: The power spectrum example (arbitrary

values for illustration):

P=1[1.2,2530,18,20,.

- Applying Filters to Power Spectrum:
- For filter Hy(k):

ka
Ev =) Pl Hii

i=ko
where: 10
- For filter Ha(k):
k3
Ex=> Pl Hii]
i=ky
where:
20 —1
Ho[19] = 0, Hh[20] 52 = 12 ~ 003,
- For filter Hsz(k):
kq
Es=> Pl Hii]
i=k;
where:
57 — 56

The constructed filters are shown in Figure 3.1.

features used for further audio analysis.

y

up to Hy[19] =1

up to H[56] =1

up to H3[126] =1

Finally, sum the product
of each P[i] with the corresponding H[i] values to get the exact Mel filter
bank energies Eq, E3, E3 for the filters. This process results in the Mel-scaled
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Figure 3.1: Three Mel-spaced triangle filters.

7. Logarithm of filter bank energies:

Take the logarithm of the filter bank energies to compress the dynamic range.

Sm = log(Em)

where E,, is the energy of the signal after passing through the mth filter. For
example, if Esy, = (2,4, 6] then:

En = log(2, 4,6 =[0.69,1.39,1.79]

The processing is done to generate the MFBANK features at this step where
the output matrix is T x d where T is the number of frames and d is the
number of triangle filters.

8. Discrete Cosine Transform (DCT):

Apply DCT to decorrelate the filter bank energies and obtain the MFCCs. The
transform equation is given by:

(2 1
Ch = Z E,, - cos {ﬂn 21/7\7/’+ )] (3.10)
m=0

where: M is the number of Mel filters, n is the index of the coefficient. For
example,

If £, =[0.69,1.39,1.79), then:

¢, = DCT([0.69, 1.39, 1.79)) = [3.87, —0.95262794, —0.15]

9. Final MFCC Coefficients:

Typically, the first 12-13 coefficients are taken as the MFCC features, excluding
the Oth coefficient which represents the average log energy of the signal. By
following these steps, you can compute the MFCCs for any given audio signal.
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10. Mean Removal and Delta Calculations in MFCC:

In the context of MFCC (Mel-Frequency Cepstral Coefficients), mean removal
and delta calculations are crucial steps for improving the robustness of the
features. The MFCC features can be normalized by subtracting the mean
of each coefficient across all frames, ensuring that the features are centered
around zero. This helps in reducing the effects of noise and variations in the
amplitude of the signal.

Let X be a matrix of MFCC features where X € R4 T is the number of
frames, and d is the number of MFCC coefficients per frame. - X[t, n] denotes
the n-th MFCC coefficient of the t-th frame. The mean p, of the n-th MFCC
coefficient across all frames is calculated as:

.
1
Hn = = ;X[t, n

The mean-removed MFCC X[t, n] is then obtained by subtracting the mean
from each coefficient:
X'[t, n] = X[t, n] — up

Since speech is a time varying signal, the basic acoustic features extracted
from short time signal analysis do not capture speech dynamics. In order to
consider the temporal correlation between the adjacent speech frames, the
basic acoustic vector is augmented with its first (A) and second order deriva-
tives (AA) as dynamic features [21] These features are usually computed from
a window of frames centered around the current frame using a simple re-
gression method. Augmenting the feature vector with the dynamic features
leads to significant improvements in recognition performance within the HMM
framework.® The delta coefficient AX[t, n] is calculated using the difference
between the MFCC coefficients in neighboring frames. A common approach is
to use a symmetric window of size N around each frame:

S K k- (X[t + k,n]— X[t — k, n])
25 ) K2
Here, K is the window size, typically set to 2. The delta-delta coefficient

N’X[t, n] is calculated similarly to the delta, but applied to the delta coeffi-
cients:

AX[t,n] =

S ik - (AX[t+ k, n] — AX[t — k, n])
25 K k2

3The HMM framework will be described Chapter 13.

A’X[t, n] =
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The combination of Mel filter bank energies and MFCCs” allows speech recog-
nition systems to effectively model and interpret human speech. By leveraging
human auditory perception, these techniques enhance the robustness and accuracy
of recognition algorithms in various applications.

3.4 Image Representation

An image can be represented as a grid of individual pixels, where each pixel rep-
resents a small, uniform block of color. The pixel grid is typically organized in a
2D matrix form where each cell corresponds to a pixel with a color value. For a
color image, each pixel usually has three color channels (Red, Green, Blue - RGB),
represented as a 3D array (height, width, and color channels). Consider a grayscale
image of size 5x5 pixels. It can be represented as a matrix:

255 200 180 100 50
230 210 190 120 80
Image = | 200 200 200 200 200
150 140 130 120 110
100 80 60 40 20

Here, each number represents the intensity of a pixel in a grayscale image (0 =
black, 255 = white).

Alternatively, an image can be represented as a grid of patches, where each patch
is a small block or sub-region of the image. This approach is used in models like the
Vision Transformer (ViT), where the image is divided into non-overlapping patches,
and each patch is treated as a single unit or token. Consider a 4x4 image divided
into four 2x2 patches:

1T 2 3 4
Image = B 7 o
9 10 11 12
13 14 15 16

Patches (2x2):
Patch 1: [[1, 2] [5, 6]]
Patch 2: [[3, 4], [7, 8]|
Patch 3: [[9, 10], [13, 14]]
Patch 4: [[11, 12], [15, 16]]

, 6
8

"The Mel filter bank energies are usually used in neural networks based speech recognition/syn-
thesis systems and the MFCCs are usually used in diagonal Gaussian based speech recognition
systems.
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The images below show an example image (te. Figure 3.2) along with its pixel
representation (L.e. Figure 3.3). They also include a visualization of the image
broken down into patches (Le. Figure 3.4).

Figure 3.2: Example image illustrating the original visual content.

Figure 3.3: Pixel representation of the example image, showcasing individual pixel
values.
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Image Patches
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Figure 3.4: The example image divided into patches, highlighting smaller regions of
the image.

3.41 Video Representation

A video can be thought of as a time series of images. Each frame in the video is an
image, and when these frames are displayed sequentially at a certain frame rate
(e.g., 24 or 30 frames per second), they create the illusion of motion.

A video is therefore represented as a four-dimensional array:

e Height: Number of pixels in each frame along the vertical axis.
e Width: Number of pixels in each frame along the horizontal axis.
e Channels: Number of color channels (e.g., RGB).

e [ime (Frames): The number of frames in the video.

Assume a video of 10 frames, each of size 128x128 pixels with 3 color channels
(RGB), can be represented as a tensor of shape:

Video Shape: (10,128,128, 3)

where: 10" is the number of frames, "128'x'128" is the size of each frame, and ‘3" is
the number of color channels.






All models are wrong, but some are
useful.

— George Box

In this chapter, we will introduce one of the most fundamental and widely used
methods in statistics, machine learning, and data science: linear regression. Lin-
ear regression is a technique that allows us to model the relationship between
input variables (also called predictors or features) and output variables (also called
responses or targets) using a linear function.

41 The model

Linear regression is a method of finding the best linear relationship between input
variables and output variables as shown in Figure 4.1. The input variables may
be float, binary, or integer values and the output variables must be real or float
values'. For example, if the input has 3 dimensions or variables and the output has
2 dimensions, then the relation between the inputs and outputs in the model will

look like this:
Y1 = wiixq + wizxa + wisxs + by (1)
Y2 = w21x1 + waxa + w23x3 + b
where each output is connected to all inputs as shown in Figure4.2. Hence, Equation
(4.1) represents a fully connected or dense network. Equation (4.1) can be written

tn matrix form as well:
w w w X1 b
|:U1] _ [ 1 12 13:| |+ [ 1:| (42)
Y2 w1 w o w3 3 b

"House price prediction is an example for predicting a float variable (i.e. house price) given the
input features. The input features could be the number of rooms, area, number of bathrooms,... etc.
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16 { —— Regression line
@ Data

14

12 A

10 1

Figure 4.1: Linear function between one input variable and one output variable fitted
using linear regression model.

Generally, linear regression single-layer network can be written as:
y=Wx+b (4.3)

where y € RX is a vector of output variables, x € RY is a vector of input variables
(each variable is a feature), W € Rf*? and b € RX is a bias vector. The W and b
are called parameters and they are estimated during the training phase using the
training data.
Finding the optimal values for W and b using the training data is the subject of the
next section.

4.2 Learning problem

Given a training data (x1,t1), (x2,t2), ..., (xn. tn), the goal of the learning algorithm
is to estimate the values of the W and b where x € R? and t € RX. In supervised
learning settings, we define an objective function to measure how close the t to its
predicted value y over all the training data N. Concretely, we define £ as follows:

K

n 1 n n 1 n n
E (W,I3)=§HLJ —t HZEZ(E/k_tk)Z (4.4)
k=1
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Figure 4.2: Linear regression network that has an input with 3 nodes or variables
and the output has 2 nodes.

and
N

E(W,b) = il Y E" (4.5)
N
n=1

where E is known as Mean Square Error (MSE) loss function and n is an index for
the training sample (x,, t,). Since y is a float vector, MSE loss function is a suitable
objective function for linear regression. In order to estimate the values of W and b
parameters, we minimize the loss function with respect to the parameters. The loss
function measures how well the linear model fits the data, and the parameters are
the coefficients and biases of the linear model. By minimizing the loss function, we
can find the optimal values of the parameters that make the best predictions for the
output variable.
As described in Chapter 2, linear models with MSE loss function (i.e quadratic
loss function) has a unique solution. Moreover, it can be found analytically. Let's
assume a multiple regression problem where we have multiple input variables and
one output variable. In matrix form, the loss function is given by

£(6 X0 — 1) (X0 —t) (4.6)

1
)= x5!
where t is the output matrix of size N x 1, X is the input matrix of size N x d + 1
where we add the bias as an extra feature that has a value =1, 6 = {W, b} is the
parameters matrix of size d 4+ 1 x 1. Ignoring the constant term ﬁ since it does not
affect the optimization results and simplifying the cost function:

EO) =0"X"X0—0"XTt—t"TX0+1t"t (4.7)
Since 8/ X"t = t' X0 = scalar,

E©) =0"X"X0—-2t' X6 +t"t (4.8)
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To find the optimal value of 8, we compute the first derivative of the cost function
with respect to the parameters and set it to zero.

JdE(6
9EO) _oxTxo_2xTt =0 (4.9)
00
It can be simplified

XTx0=x"t (4.10)

Hence, the analytical solution is given by
0=(X"X)""X"t (4.11)

However, finding the values of the parameters W and b using the analytical solution
does not scale well with the amount of training data. Hence, we will focus on the
gradient descent solution in this chapter. The gradient of MSE loss function with
respect to the parameters W and b can be computed as follows:

JE"(W,b) 0E"(W,b) dy,

— — n t” n 4/]2
o T e (Rl (4.12)

where w; is the element (r, s) of the matrix W. Hence,

N

IE(W, b) .

= Z (7 —t7) (4.13)
rs —

and the gradient of the loss function with respect to the bias variable b, is given by

OE(W, b)
70/3 N Z —t") (4.14)

n=1

Using the gradient descent, the matrix of the weights and the bias vector can be
updated as follows:

t+1 t 9E(W, b)

W =w,.—n

rs rs aW/—S
pt i OE(W.b) (419)
r r abr

where n is the learning rate. The algorithm can update the parameters after the
gradient over the whole training set is accumulated. To scale the problem to a large
amount of training data, we use a variant called mini-batch stochastic gradient
to estimate the parameters of the linear regression model. This algorithm will be
described in the next subsection.
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4.21 Numerical solution

Mini-batch stochastic gradient descent is a variation of gradient descent that up-
dates the parameters of the linear regression model using a subset of the data
(called a mini-batch) at each iteration. It is a numerical solution to find the global
minimum of the quadratic loss function with respect to the parameters.

The idea is to reduce the computational cost and memory usage of gradient descent,
while still achieving a good convergence rate.

The algorithm works as follows:

o Initialize the parameters W and b randomly or with zeros.
e Divide the data into small batches of equal size (for example, 32 or 64).
e Repeat until convergence or a maximum number of epochs:

— For each batch:

* Compute the predictions of the linear model for the batch.

* Use Equation (0.7) to compute the loss function for the batch ( Le.
mean squared error) .

x Compute the gradients of the loss function with respect to the pa-
rameters for the batch using Equation (4.13 ) and Equation (4.14).

* Update the parameters using Equation (5.13).

— Return the final parameters.
The advantages of mini-batch gradient descent are:
e |t can handle large datasets that do not fit in memory.
e |t can exploit parallelism and vectorization to speed up computations

but it requires tuning the batch size and the learning rate hyperparameters.

4.3 Example

To illustrate the linear regression algorithm, Table 4.3 with 10 rows of random
training data was created. The first three columns represent input features (x1, x2, x3)
and the last two columns represent output targets (t1, £):

’ import numpy as np

; from sklearn.metrics import mean_squared_error
5 # Training data

6 X = np.array ([
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Table 4.1: Synthesized data for linear regression modeling. The input variables are
3 and the output variables are 2 and they are float variables.

[0.23,
[0.34,
[0.98,
[0.51,
[0.42,
[0.89,
[0.14,
[0.76,
[0.66,
[0.45,

O O O OO O OO oo

D

T = np.array

[2.74, 1.

[1.42,
[3.12,
[1.63,
[2.84,
[2.17,
[1.96,
[2.29,
[1.27,
[2.86,

NP, NNENEDNDN

D

# Analytical

def analytical_solution(X,

X1 X2 X3 t &
0231087 (095 | 274 | 1.82
034|056 | 029 | 142 | 261
098 | 068 | 0.05 | 3.12 | 249
051 1024|064 | 1.63 | 1.95
042 1075|049 | 284 | 237
089 | 011|093 | 217 | 168
014 1091|025 | 196 | 255
076 | 041 | 053 | 229 | 2.24
0.66 | 004 | 008 | 1.27 | 1.35
045|082 | 076 | 286 | 2.74

.87, 0.95],

.56, 0.29],

.68, 0.05],

.24, 0.64],

.75, 0.49],

.11, 0.93],

.91, 0.25],

.41, 0.53],

.04, 0.08],

.82, 0.76],

g

821,

.61],

L4971,

.95]1,

.371,

.681,

.55]1,

.24]7,

.35],

L7471,

solution

T):
X_b = np.c_[np.ones ((X.shape[0], 1)), XI

theta =
return t

np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(T)

heta

7 theta_analytical = analytical_solution(X, T)
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8 print ("Analytical solution coefficients:", theta_analytical)

40 # Gradient descent

11 def gradient_descent (X, T, eta=0.1, iterations=100000):

12 m, n = X.shape

43 theta = np.random.randn(n + 1, T.shapel[1])

1 X_b = np.c_[np.ones((m, 1)), X]

15 for i in range(iterations):

16 gradients = 2 / m * X_b.T.dot(X_b.dot(theta) - T)
7 theta -= eta * gradients

18 return theta

0 theta_gradient_descent = gradient_descent (X, T)
51 print ("Gradient descent coefficients:", theta_gradient_descent)

3 # Comparing results

50 Y_analytical = np.c_[np.ones((X.shape[0], 1)), X].dot(
theta_analytical)

5 Y_gradient_descent = np.c_[np.ones ((X.shape[0], 1)), X].dot(
theta_gradient_descent)

7 mse_analytical = mean_squared_error (T, Y_analytical)
8 mse_gradient_descent = mean_squared_error (T, Y_gradient_descent)

60 print ("Mean Squared Error - Analytical Solution:", mse_analytical)
o1 print ("Mean Squared Error - Gradient Descent:", mse_gradient_descent

)

Listing 4.1: Python example for finding the linear regression parameters using the
gradient descent algorithm. The analytical solution is provided as well.

Since linear regression has a unique solution, both analytical and gradient descent
methods have the same result.

4.4 Assignment

Predict house price using the Keras deep learning library and Google colab. To load
the dataset, please use the method: tfkeras.datasets.boston_housing.load_data.






Logistic regression is a powerful
tool for modeling the relationship
between a categorical response
variable and some explanatory
variables. It is especially useful
when the response variable has
only two possible outcomes, such as
success/failure, yes/no, or
healthy/sick.

— Alan Agresti

In this chapter, we will introduce a probabilistic binary classification model' that
estimates the probability of an outcome that can only be one of two values, such
as yes or no, based on one or more predictor variables. Hence, it can be used to
make a binary classifier by choosing a threshold value and classifying inputs with
probability greater than the threshold as one class, and below the threshold as the
other class

5.1 The model

Logistic regression is a classification method that is used to predict the relationship
between a binary dependent variable and one or more independent variables. As
shown in Figure 5.1, the network has one output variable and many input variables.
The input variables may have float, binary, or integer values, and the output proba-
bility variable is a float bounded between 0.0 and 1.0. For example, if the input has
3 dimensions or variables and only one output variable, then the relation between
the inputs and the output in the model will look like this:

Z=wix] +woxo + w3x3 + b (5.1)

TAlso known as logistic regression in the literature.
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where the intermediate 7 is connected to all inputs and has a float value. Hence,
Equation (5.1) represents a fully connected or dense network. It can be written in
matrix form as well:

X1
Z=[W1 wo vv3] x| +b (5.2)
X3

Generally, logistic regression single-layer network can be written as:
z=w/x+b (5.3)

where z € R is a variable, x € R is a vector of input variables (each variable is a
feature), w € R? and b is a bias. The w and b are called parameters and they are
estimated during the training phase using the training data.

In addition, the output y is computed in Equation (5.4) using a sigmoid transformation
or activation function. It is used to map z to a float bounded between 0.0 and 1.0
as shown in Figure 5.27. Naturally, the binary activation function can transform the
input to output that has a value 0 or 1 as shown in Figure 5.3. However, this function
is not continuous and not differentiable at 0. This explains why sigmoid was selected
as a transformation method for binary classification. The sigmoid activation function
is a continuous and differentiable function. Hence, we can compute the gradient of
a loss function based on that activation function.

1

= 5.4
T+e? 64

y
Finding the optimal values for w and b using the training data is the subject of the
next section.

5.2 Learning Problem

Given a training data (x1, &), (x2, t2), . . ., (X, tn), the goal of the learning algorithm
is to estimate the values of the w and b where x € R? and t € {1,0}. We define
an objective function to measure how close the t to its predicted value y over all
the training data N. Concretely, we define E as follows:

E"(w, b) = —(t"logp" + (1 — t")log(1 — p")) (5.5)
and
1 N
Elw,b) = ; E (5.6)

%It is so called because its graph is 'S-shaped".



52. LEARNING PROBLEM

sigmoid

w
2 w3

Figure 5.1: A logistic regression model (i.e. binary classification model) must have
only one output variable and optional count of input variables.

where E is known as the binary cross-entropy (BCE) loss function and n is an index
for the training sample (x,, t;). The loss function is plotted in Figure 54. The loss
increases exponentially as the predicted probability of the true class gets closer to
zero. Since y is a float value between 0 and 1, the BCE loss function is a matching
objective function for logistic regression. In order to estimate the values of w and b
parameters, we minimize the loss function with respect to the parameters.
The logistic regression model with BCE loss function has a unique solution®. The
gradient of BCE loss function with respect to the parameters w and b can be com-
puted as follows:

JdE"(w,b)  0E"(w, b)dy" 9z"

— 57
ow; dy"  0z" dw; (57)

where w; is the element i of the vector w. The three terms can be computed as

3It can not be found analytically.
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Figure 5.2: Sigmoid activation function.

follows:
JdE"(w, b) L”+ 1T—t"
ayn J 1 — gn
o U y”)t+ J ( t")
= 58
(y" f”)
y"(1=y"
Using Equation 5.4, the gradient of the output y” with respect to z":
ay" 0 — e 7" (—1)
0z" (14 e 2")?
B 1 e
C(T4+e ) (14+e 2"
N (59)
B (1+e2")
1
A n /I y
y'( k +e,ZH))
— yn(/l _ 917)
And giwﬂl is given by
a n
Z (5.10)

aWi
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Figure 5.3: Binary activation function.

Hence, Equation (5.7) can be written using the three terms computed above as

follows:
OE"(w,b)  (y" — t7) .

— n »] _n /
o, g —gn? 0y

(5.11)
— (yﬂ o tn)Xi

and the gradient of the loss function with respect to the bias variable b is given by

OE"(w, b)

ap Wt (512)

Using the gradient descent, the vector of the weights and the bias term can be
updated as follows:

N
.
1

wit = — TN Z(Un — X7

ad (5.13)
4N

bt+1 _ bt - nN Z(yn . t.n)
n=1

where n is the learning rate. Using mini-batch stochastic gradient descent, it is

possible to learn the parameters efficiently for large datasets. The algorithm is very
similar to the one described in section 4.2.1.
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Binary Cross Entropy

0.0 0.2 0.4 0.6 0.8 10
Figure 5.4: Binary cross-entropy objective function.

5.3 Classification Decision

The output of the learning algorithm is to estimate the values of the w and b
parameters. Hence, they can be used at the test time for prediction. Since y is a
float value between 0 and 1, it can not be used directly to classify the input samples
to 0 or 1. To overcome this problem, we define a threshold for decision

. 1 ify>05
y= .
0 ify<05
where {J is the final decision either O or 1. Logistic regression separates the two

classes with a linear decision boundary. The linear decision boundary of logistic
regression is the set of all points x that satisfy:

1 1
Ply=1|x)=Ply=0|x) = —— = = 514
(y =1 = Ply = O]x) = —— = 5 5.14)
then
Z=wWiX] +wWoxo + -+ wyxg +b=0 (5.15)
For two-dimensional data
wix1 + woxo +b =0 (5.16)
Hence, )
o=—— My (5.17)

w2 w2
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For example, the two-dimensional AND gate4 ts shown in Table 55. The first two
columns represent input features (xq, x2) and the last column columns represent
output targets t. The decision boundary is shown in Figure 55.

2.00 A —— Decision Boundary
® ClassO

1.75 A Class 0
® Class0

1.50 - ® Class1

1.251

1100

0.75 A

0.50 A

0.25 A

0.00 A ° )

-0.50 -0.25 0.00 0.25 050 0.75 1.00 125 1.50
x_1

Figure 5.5: The decision boundary for the two-dimensional ‘AND" gate.

5.4 Evaluation

Binary classification evaluation metrics help assess the performance of a model that
categorizes instances into one of two classes: typically a "positive’ class (e.g. a
disease is present) and a "'negative’ class (e.g, a disease is absent). The confusion
matrix is the starting point for binary classification metrics as shown in Table 5.1.
It is a 2 x 2 table that categorizes predictions:

Predicted Positive | Predicted Negative
Actual Positive | True Positive (TP) | False Negative (FN)
Actual Negative | False Positive (FP) | True Negative (TN)

Table 5.1: The binary classification confusion matrix.

Below is a detailed breakdown of common evaluation metrics, including precision,
recall, F1-score, and AUC (Area Under the Curve):

"The AND gate is known in logic design literature.
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. Precision: Precision measures the accuracy of positive predictions and is de-

fined as:

Precisi TP (5.18)

recision = ———— :
TP +FP

Precision is important when false positives are costly, for instance in medical

diagnoses, where a false positive could lead to unnecessary treatments.

. Recall (Sensitivity or True Positive Rate): Recall indicates the model's ability

to correctly identify actual positives and is defined as:

Recall P (5.19)

ecall = ——~ .
TP +FN

High recall is crucial when false negatives are costly, such as in spam detec-

tion, where failing to flag a spam email is more problematic than accidentally

flagging a valid one.

. F1-Score: The F1-score is the harmonic mean of precision and recall, balanc-

ing the two metrics and penalizing extreme values in either. It's particularly
useful when the class distribution is imbalanced:

Precision x Recall
Fl-score =2 Precision + Recall (520)

A high F1-score implies a good balance between precision and recall, mean-
ing the model performs well on both detecting positives and minimizing false
positives.

. Area Under the Curve (AUC): The Area Under the Curve (AUC), specifically

for the Receiver Operating Characteristic (ROC) curve, evaluates a model's
ability to distinguish between classes across various threshold settings. The
ROC curve plots the True Positive Rate (TPR) against the False Positive Rate
(FPR), with TPR as:

TPR— —1° (5.21)
TP +FN '

and FPR as:

FP

D = —-
PR=F N

(5.22)
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Initialize variables for TPR and FPR, typically starting at (0, 0) on the
ROC curve.

For each unique threshold ¢, predict positive for all instances with scores
greater than t.

Calculate the TPR and FPR for the current threshold.

Calculate AUC =f01 T'PR(FPR)d(F PR) using the Trapezoidal Rule: The
AUC can be computed by summing the areas of trapezoids formed by
each pair of consecutive points (FPR;, TPR;) and (FPR;11, TPRi+1) on
the ROC curve:

n—1
AUC = > (FPRiq — FPR))-
i=1

TPR 11 + TPR,

. (5.23)

This formula computes the area for each trapezoid under the curve and
sums them up to get the total AUC (see the Python implementation for
the AUC calculations in Listing 5.1). The AUC is the area under this ROC
curve, ranging from 0 to 1 (see Figure 5.0). A model with an AUC of
0.5 performs no better than random guessing, while an AUC close to 1
indicates a strong ability to differentiate between classes. Since AUC-
ROC evaluates model performance at multiple thresholds, it provides a
threshold-independent metric that generalizes well across different con-
texts. When the data is extremely imbalanced, meaning the positive class
is rare compared to the negative class, AUC-ROC may provide an overly
optimistic view. In such cases, even a model that performs poorly in
identifying the minority class can yield a high AUC score, as the met-
ric does not give adequate emphasis to the minority class. Metrics like
Precision-Recall AUC, which focuses on the positive class, might be more
insightful.

Fach of these metrics provides unique insights into model performance, with preci-
sion and recall balancing error types, F1-score balancing precision and recall, and
AUC reflecting general model discrimination ability across thresholds.

| import numpy as np
» import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

# True labels and predicted probabilities
true_labels = np.array([O0O, 1, 1, O, 1, O, 1, 0I)
predicted_probs = np.array([0.1, 0.9, 0.8, 0.3, 0.6, 0.2, 0.95,

0.41)
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Figure 5.6: The plot shows the ROC curves for different AUC values: AUC>0.5 (the
classifier is likely to effectively separate positive class values from negative ones, as
it correctly identifies a greater number of True Positives and True Negatives com-
pared to False Positives and False Negatives.), AUC=1 (perfect classifier), AUC=0.5
(random guess), and AUC=0 (an inverse predictor is a classifier that incorrectly la-
bels all negative instances as positive and all positive instances as negative.).

# Define thresholds

thresholds = np.linspace(0, 1, 11) # 0.0 to 1.0 in steps of 0.1

# Calculate TPR and FPR for each threshold
tpr = []

fpr = []

for thresh in thresholds:

predictions = (predicted_probs >= thresh).astype(int)

tp = np.sum((predictions == 1) & (true_labels
fn = np.sum((predictions == 0) & (true_labels
fp = np.sum((predictions == 1) & (true_labels
tn = np.sum((predictions == 0) & (true_labels

1))
1))
0))
0))

tpr.append(tp / (tp + fn) if (tp + fn) > 0 else 0)
fpr.append(fp / (fp + tn) if (fp + tn) > 0 else 0)

# Calculate AUC using the trapezoidal rule
auc = np.trapz(tpr, fpr)
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print (£"AUC: {auc:.3f1}")

# Verify with sklearn’s roc_auc_score
print (£"AUC (sklearn): {roc_auc_score(true_labels, predicted_probs)
:.3fF")

plt.plot (fpr, tpr, marker=’o’, label=f"AUC = {auc:.3f}")

plt.plot ([0, 1], [0, 1], ’r--’, label="Random Guess")

plt.xlabel ("False Positive Rate (FPR)")

plt.ylabel ("True Positive Rate (TPR)")

plt.title ("ROC Curve")

plt.legend ()

plt.show ()

Listing 5.1: The script computes the AUC using manually calculated TPR and FPR

values.

5.41 F1 Curve and threshold tuning

In binary or multilabel classification (see Chapter 7), threshold tuning involves find-
ing an optimal decision threshold for converting predicted probabilities into binary
class labels (0 or 1). By adjusting this threshold, we can influence metrics like
precision, recall, and ultimately, the F1 score. Plotting the F1 score as a function of
the threshold helps visualize how performance changes with the threshold and find
an optimal balance between precision and recall for the specific task.

Typically, classifiers produce a probability score, p € [0, 1], indicating the likelihood
of an instance belonging to a particular class. The default threshold is usually set
to 0.5; if p > 0.5, the instance is classified as the positive class; otherwise, it's
classified as the negative class (see Section 5.3). Increasing the threshold (e.g,
0.7 or 0.8) usually increases precision since only higher confidence predictions are
considered positive. However, this can lower recall, as fewer positive instances are
captured. Lowering the threshold (e.g, 0.3 or 0.2) generally increases recall but
might reduce precision since more instances, including those with low probability
scores, are classified as positive. The F1 score is the harmonic mean of precision
and recall:

Drarici ) 3
-2 Precision - Recall

" Precision + Recall

Since F1 balances precision and recall, tuning the threshold for the highest F1 can
help achieve an effective tradeoff between the two. To identify the optimal threshold,
we compute the F1 score at different thresholds, typically ranging from 0 to 1, and
plot the results. The steps to Generate the F1 Curve:

e Split the dataset into training, development, and test sets.
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e Train the model on the training set.

e On the development set, use the model to output probability scores for each
instance.

e Define a range of thresholds, e.g., threshold € {0.0,0.1,0.2, ..., 1.0}.

e For each threshold, calculate predicted labels and then compute precision,
recall, and F1 score.

e Plot the F1 score on the y-axis and the threshold on the x-axis.
e The peak of the F1 curve indicates the threshold with the highest F1 score.

e The threshold at the peak of the F1 curve maximizes the F1 score and repre-
sents a balance between precision and recall.

e Depending on the application, you might also consider thresholds where F1
score is near-maximal but skewed toward higher precision or recall if one is
more critical.

As an example, let's say we have a range of threshold values {0.1,0.2,...,0.9} and
the computed F1 for each threshold are:

Threshold | Precision | Recall | F1
0.1 0.65 095 | 077
02 0.70 090 | 079
03 0.75 085 | 0.80
0.4 0.80 082 | 081
05 0.82 078 | 0.80
0.6 0.85 075 | 0.80
0.7 0.88 070 | 078
0.8 0.90 065 | 076
0.9 0.92 060 | 073

Table 5.2: An example of F1 calculations using different thresholds.

From this table, we observe that the F1 score peaks at a threshold of 0.4 with an
F1 score of 0.81. This is the optimal threshold for balancing precision and recall in
this example. A Python code example for plotting F1 Curve are listed below:

import numpy as np
import matplotlib.pyplot as plt

; from sklearn.metrics import precision_score, recall_score, fl_score

# Sample probability predictions and true labels
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Table 5.3:  Two-dimensional AND gate truth table.
X1 | X2

= Ol OO ~+

0
1
0
1

6 probabilities = np.random.rand(100) # simulated probabilities
7 true_labels = np.random.randint (0, 2, size=100) # simulated binary
labels

) thresholds = np.linspace(0, 1, 50)
0 f1_scores = []

» for threshold in thresholds:

13 predictions = (probabilities >= threshold).astype(int)
f1 = f1_score(true_labels, predictions)

15 f1_scores.append(fl)

17 # Plotting the F1 score vs. threshold

8 plt.figure(figsize=(10, 6))

) plt.plot (thresholds, f1_scores, marker=’o’, color=’b’, label=’F1
Score’)

0 plt.title(’F1 Score vs. Decision Threshold’)

plt.xlabel (’Threshold’)

> plt.ylabel (’F1 Score’)

3 plt.legend ()

1 plt.grid ()

25 plt.show ()

Listing 5.2: A sample Python code to plot the F1 score against thresholds using a

binary classifier's probability predictions.

Maximizing the F1 approach is particularly effective in maximizing the classifier’s
performance in scenarios where both precision and recall are essential and provides
insight into how adjusting the decision threshold impacts classifier behavior.

5.5 An Example

A Python code is provided to illustrate the logistic regression learning algorithm
and plot the decision boundary:

> import numpy as np
; import matplotlib.pyplot as plt
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def sigmoid(z):
return 1 / (1 + np.exp(-2z))

def predict (X, w):
return sigmoid(mp.dot(X, w))

def cost_function(X, t, w):
N = len(t)
y = predict (X, w)

E = -1/N * (np.dot(t.T, np.log(y)) + np.dot((1-t).T, np.log(l-y)

))

return E

def gradient_descent(X, t, w, alpha, iterations):
m = len(t)
E_history = []
for i in range(iterations):
y = predict (X, w)
w = w - alpha * (1/m) * np.dot(X.T, (y-t))
E_history.append(cost_function(X, t, w))
return w, E_history

X = np.array([[0, 0], ([0, 1], [1, o], [1, 111D
t = np.array ([[0], [0], [0, [111)

m = len(t)
X = np.hstack ((np.ones((m, 1)), X))

n = X.shape[1]

3w = np.zeros ((n, 1))

alpha = 0.01
iterations = 100000

w_final, E_history = gradient_descent(X, t, w, alpha, iteratiomns)
print (predict(X, w_final))

= np.linspace(-0.5, 1.5)
-(w_final[0] + w_final[1]l*x_1) / w_final[2]

x_1
x_2
plt.plot(x_1,x_2,label=’Decision Boundary’)
plt.scatter(0,0,label="Class 0’)
plt.scatter(0,1,label="Class 0’)
plt.scatter(1,0,label="Class 0’)
plt.scatter(1,1,label="Class 1°)

plt.xlabel (’x_17)
plt.ylabel(’x_27)

» plt.legend ()
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; plt.savefig(’decision_boundary_and.png’)

Listing 5.3: Python example for plotting the logistic regression decision boundary
for AND Problem.

Since logistic regression has a unique solution, running the script several times will
lead to the same result.

5.6 Assignment

Spam email detection (binary classification task) using the Keras deep learning
library and Google colab. To load the dataset, please visit https://archive.ics.
uci.edu/ml/datasets/spambase.


https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/ml/datasets/spambase
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When we make inferences based on
incomplete information, we should
draw them from that probability
distribution that has the maximum
entropy permitted by the
information we do have.

*x.,

— E. T. Jaynes

In this chapter, we will introduce the probabilistic multiclass or multinomial classi-
fication algorithm'. It aims to classify the input samples into one of three or more
classes (for two classes only see Chapter 5 of binary classification).

6.1 The model

A multiclass softmax classifier is a supervised learning algorithm that can handle
multiple classes. It assigns a probability to each class based on the input features
and the learned parameters. The input variables may be float, binary, or integer
values and the output variables must be categorical variables or class labels. Cat-
egorical variables or class labels in multiclass problem setting are usually encoded
using one-hot vectors. A one-hot vector is a vector that has only one element with
a value of 1 and the rest are 0. For example, if there are three classes A, B, C and
D, we can use the following one-hot vectors to represent them:

A:[1,0, 0]

B: [0, 1, 0]
C:[0,0, 1]

The advantage of using one-hot vectors is that they can be easily used with models
that output probabilities for each class.

"It is known as the softmax [22] or maximum entropy classifier [23]
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If the input has 4 dimensions or variables and the output has 3 classes, then the
relation between the inputs and outputs in the model will look like this:

71 = Wiixq + Wixo + Wi3xs + Wigxs + by
72 = Woix1 + Waxo + Wasx3 + wagaxg + bo (6.1)
73 = W31X1 + W32X2 + W33x3 + W34x4 + b3

where each output is connected to all inputs as shown in Figure 6.1. Hence, Equation

(6.1) represents a fully connected or dense network. Equation (0.1) can be written
in matrix form as well:

Wi Wiz Wiz Wig X1

1 W21 W22 wWo3 W X by
21 W22 w23 W 2
2| = + | by (6.2)
W31 w32 w3z w4 | | X3
73 b3

W41 W42 W43 W44 | | X4

¥

softmax

Figure 6.1: Multiclass classification network that has an input with 4 nodes or
variables and the output has 3 nodes or classes.

Generally, softmax regression single-layer network can be written as:
z=Wx+b (6.3)
y = softmax(z) (6.4)
and the elements of the softmax y; are given by
e’

yj= ————fori=1,... . K 6.5
Yy S o (6.9)
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where y € RX is a vector of output classes or variables ( the softmax transform is
a normalized function, meaning that all elements of the output vector y are in the
range (0, 1) and sum up to 1), x € R? is a vector of input variables (each variable
is a feature), W € RK*d and b € RX is a bias vector. The W and b are called
parameters and they are estimated during the training phase using the training
data.

Finding the optimal values for W and b using the training data is the subject of the
next section.

6.2 Learning problem

Given a training data (x1,t1), (x2,t2), ..., (xn, tn), the goal of the learning algorithm
is to estimate the values of the W and b where x € R and t is a one-hot vector
of length K can be mathematically denoted as an element of the set 0, 1K that has
exactly one element equal to 1 and the rest equal to 0. In supervised learning
settings, we define an objective function to measure how close the t to its predicted
value y over all the training data N. Concretely, we define E as follows:

K
E"(W,b) = — te log y}, (6.6)
k=1
and
1 N
EW,b) = 21 E" (6.7)

where £ is known as categorical cross-entropy loss function and n is an index for the
training sample (x,, t,). Since y is a float vector (its elements float between 0 and 1),
the categorical cross-entropy loss function is a suitable objective function for softmax
regression. In order to estimate the values of W and b parameters, we minimize the
loss function with respect to the parameters. The loss function measures how well
the softmax model fits the data, and the parameters are the coefficients and biases
of the model. By minimizing the loss function, we can find the optimal values of
the parameters that make the best predictions for the output classed. The softmax
regression model with the categorical cross-entropy loss function has a unique
solution”.

In order to derive the gradient of the objective function with respect to the parameters
of the softmax classifier, we will need the derivative of the softmax function with
respect to its inputs. The gradient of softmax with respect to its inputs is a matrix

2|t can not be found analytically.
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known as the Jacobian matrix’. It is KxK matrix and it is given by:

(721 (922 323 0ZK
(921 (922 323 0ZK (6 8)
0z 0z, 073 dzi

When k = i (i.e. diagonal elements of the matrix):
dy, e~ Z/ e? — e%k e
dz; (2_;e7)?

E’Z‘ Zj er _ ezk

= 9
ZJ e’ Zj e (6 )
= yi(1 = yx)
=Yi—YiYk
and when k # i:
dyk —e“ie’k e’ e’k
= = — = —y; 6.10
0z, (L, en)? Yy, eny en U (6:10)
Hence, the two equations can be combined into one equation:
ay
52 = uildi —yd (6:11)
where Kronecker delta 0;¢ is defined as follows:
Owhen i + k
S = when i # 612)
1Twhen i =k
It can be written using two separate matrices:
yr 0.0 -0 Y1yt Y1y2  yiys o Yiyk
dy 0 y20 -0 Y21 Y2y2  Y2ys oo Yayk
==1. 7 . -1 | . . (6:13)
aZ . . : - : : : : :
0 0 0 - yk YkYl YkYyz YkYys - Ykyk
Using Equation (6.11), the
K
E"(W,b) = — te log y} (6.14)
k=1

3The softmax function is a vector and differentiating a vector with respect to a vector of parameters
generates a matrix.
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N K
IE(W, b) 1 » OE"(W, b) 9y 92"

an‘j N — 6g'k7 @(Z)WU
1 N K l’”
:_NZ Z = Yi (5t/<_J/<)) /
=\ Yk
K 4n

t( n n n
> ;@yi (yp — &-k))x, (6.15)

n=1 (k=1 k

n=1 k=1 k=1 y
N

_ l no__4n n

=N Y; X
n=1

where Zf:1 t =1.0. Similarly, the gradient of the cross-entropy loss function with
respect to the bias b;:

L L

M: ! i(Lﬁ_tﬁ) (6.16)

Using the gradient descent, the vector of the weights and the bias term can be
updated as follows:

N
t+1_ n
N
bf+1: t Z tn

where 1 is the learning rate. Using mini-batch stochastic gradient descent, it is
possible to learn the parameters efficiently for large datasets. The algorithm is very
similar to the one described in section 4.2.1.

(6.17)

6.3 Classification decision

The output of the learning algorithm is to estimate the values of the W and b
parameters. Hence, they can be used at the test time for prediction. The class with
the highest probability is the predicted class. To find this winner class { for a given
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sample:

>
|

~ A 6.18)

arg max (Z
G J1g/<cg/<( k)

The softmax classifier separates the classes with linear decision boundaries. To find
the decision boundary for two-dimensional data with three classes, let:

71 = wi1x1 + wiaxo + by
72 = woix1 + woxz + by (6.19)
73 = W31x1 + W3px2 + b3
We have three decision boundaries between classes 1 and 2, 1 and 3, and 2 and 3.
The linear decision boundary between classes 1 and 2 must satisfy:
wiix1 + wixo + b1 = worxg + wooxo + bo (6.20)
then
(W11 — Wy )X1 + (W12 — W22)X2 = bz — b1 (6.21)

For example, the decision boundaries are shown in Figure 0.2 (details in the next
section).

Softmax classifier for three classes

Figure 0.2: The decision boundaries between three classes for the two-dimensional
data.
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6.4 Example

A Python code is provided to illustrate the learning algorithm of the softmax classifier
and plot the decision boundaries between three classes:

’ import numpy as np
; import matplotlib.pyplot as plt

def softmax(x):
Xx = x - np.max(x, axis=1, keepdims=True)
exp_x = np.exp(x)
return exp_x / np.sum(exp_x, axis=1, keepdims=True)

def cross_entropy(y_true, y_pred):
y_pred = np.clip(y_pred, le-12, 1 - 1le-12)
return -np.mean(np.sum(y_true * np.log(y_pred), axis=1))

def gradient_descent (X, y_true, y_pred, w, b, learning_rate):
m = X.shape [0]
dwv = (1/m) * np.dot(X.T, (y_pred - y_true))
db = (1/m) * np.sum(y_pred - y_true, axis=0)
W = w - learning_rate * dw
b = b - learning_rate * db
return w, b

» np.random.seed (42)

X0 = np.random.multivariate_normal (mean=[0, 0], cov=[[1, 0], [0,
1]1], size=100)

yO np.array([[1, 0, 0]] * 100)
X1 = np.random.multivariate_normal (mean=[3, 3], cov=[[1, 0], [0,
1]1], size=100)
» y1 = np.array([[0, 1, 0]] * 100)

X2 = np.random.multivariate_normal (mean=[-3, 3], cov=[[1, 0], [0,
111, size=100)

y2 = np.array([[0, O, 1]] =* 100)

X = np.concatenate ((X0, X1, X2), axis=0)

y_true = np.concatenate ((y0, yl, y2), axis=0)

y w = np.random.randn (2, 3)

b = np.random.randn (3)

b epochs = 100

learning_rate = 0.01

) for epoch in range (epochs):

y_pred = softmax(np.dot(X, w) + b)
loss = cross_entropy(y_true, y_pred)
if epoch % 10 == 0:
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13 print (f"Epoch {epoch}, Loss: {loss:.4f}")
| W, b = gradient_descent(X, y_true, y_pred, w, b, learning_rate)

6 # Plotting the decision boundaries
7 x_min = X[:, 0].min() - 1
8 x_max = X[:, 0].max() + 1
9 y_min = X[:, 1] .min() - 1
50 y_max = X[:, 1].max() + 1

2 xx, yy = np.meshgrid(np.arange(x_min,x_max,.01) ,np.arange(y_min,
y_max,.01))

3 Z=np.argmax (softmax (np.dot(np.c_[xx.ravel (), yy.ravel ()], w) + Db),
axis=1) .reshape (xx.shape)

5 plt.contourf (xx ,yy ,Z ,alpha=.5)

57 plt.scatter (X[:,0],X[:,1],c=np.argmax(y_true,axis=1), cmap=plt.cm.
Spectral)

8 plt.xlabel("x_1")

59 plt.ylabel("x_2")

61 plt.show ()

02 plt.savefig("softmax_classifier.png", dpi =600)
Listing 6.1: Python example for plotting the softmax decision boundaries for three
classes problem.

Since softmax regression has a unique solution, running the script several times will
lead to the same result.

6.5 Assignment

Implement an optical recognition of handwritten digits (multiclass classification task)

using the Keras deep learning library and Google colab. To load the dataset, please
visithttps://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+
Digits.


https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits




Multilabel classification is a
classification task where each input
sample can be assigned multiple
labels. For instance, a given image
may contain both a cat and a dog
and should be annotated both with
the “cat” label and the “dog” label.

— Francois Chollet

In this chapter, we introduce the multilabel classification algorithm where each
instance can belong to more than one class at the same time. For example, a
document can have multiple topics, such as politics, religion, and education. The
multilabel classification is different from the multiclass classification where each
data point or instance must belong to one class only.

7.1 Model

Multilabel classification is a variant of the classification problem where multiple
nonexclusive labels may be assigned to each instance. For example, suppose you
want to classify a movie based on its genres. A movie can belong to more than one
genre, such as comedy, romance, and action. In this case, the input is the movie
and the output is a set of genres that describe the movie (three genre in total). For
example, a movie that is only comedy would have an output of:

t=1[100]
A movie that is both romance and action would have an output of:
t = [0 1 1]

A movie that has no genres would have an output of:
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t=[000]

This output is called a multi-hot vector, where each element corresponds to a label
and has a value of 0 or 1 depending on whether the label is present or not. A movie
can have any combination of genres, so there are 2° = 8 possible outputs for this
problem.

One way to approach this problem is to transform it into binary classification prob-
lems, where each label is predicted independently by a binary logistic regression
classifier. The target of such classifiers can be represented as a multi-hot vector,
where each element corresponds to a label and has a value of 0 or 1 depending on
whether the label is predicted or not. The model can be written as:

y = [91 Yo : UL] (7.1)

= [0(w17x+ bq) G(WZTX—l— b?) U(WZX-l— /JL):|

where ¢ is the sigmoid function, x is the input vector, w; and b; are the weight
vector and bias term for the i-th label, L is the number of labels. An example of
multilabel network is shown in Figure 7.1.

¥or ¥

sigmoid sigmoid sigmoid

Figure 7.1: Multilabel classification network that has an input with 4 nodes or
variables and the output has 3 nodes or classes.
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7.2 Learning problem

The objective function for multilabel classification should be the summation of the
binary cross-entropy losses for each label. Binary cross-entropy is a special case of
categorical cross-entropy where the target is 0 or 1. It measures how well a model
predicts a binary outcome. The binary cross-entropy loss for a single label can be
written as:

E(t,y) = (1 =16 log(1 —y)
where t is the true label (0 or 1) and y is the predicted probability (between 0 and
1).

The objective function for multilabel classification can be obtained by summing the
binary cross-entropy losses for each label:

—tlog(y) — (7.2)

L
Elt,y) = Z [t Log(y) + (1 — ) log(1 — yy)] (7.3)

where L is the number of labels, t is the true multi-hot vector, and y is the predicted
probability vector.

This objective function can be used to train a multilabel classifier by minimizing
it with respect to the model parameters (see Chapter 5 for details about gradient
computation).

A summary of the learning problems discussed so far is shown in the following table:

Model linear binary multiclass multilabel
regression | classification | classification | classification
activation linear sigmoid softmax sigmoid
# of output nodes | K > 1 K=1 K>3 K>?2
I . mean binary categorical K binary
objective function
square error | cross entropy | cross entropy | cross entropy

Table 7.1: A summary for the learning algorithms.

7.3 Evaluation

Micro F1-score is an evaluation metric for multilabel classification that provides a
harmonic mean of precision and recall across all labels, focusing on the aggregate
performance rather than individual label performance. In multilabel settings, we
compute this by treating each true positive, false positive, and false negative across
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all classes as one combined group, which helps to account for class imbalance and
gives an overall sense of model performance.
Let us define the following:

e True Positives (TP): The number of times a label is correctly predicted as
present in the instance.

e False Positives (FP): The number of times a label is incorrectly predicted as
present.

e False Negatives (FN): The number of times a label is incorrectly predicted as
absent.

For a set of labels {1,2,...,L} across N samples, we calculate micro precision,
recall, and F1 as follows:
The micro precision Ppicro is defined as:

> 1 TPy
Y L (TP +FPy)’

(7.4)

) _
F micro —

where Z,L:1 TP, represents the total true positives across all labels, and Z[L:1 (TP +
FP/) represents the total predicted positives.
Similarly, the micro recall Ryicro is:

> i TPy
lecro = i S ,

(7.5)

where Z,L:1(TP[ + FNy) is the total actual positives.
The micro F1 score is the harmonic mean of Puyicro and Ruicro:
2 Pmicro ) lecro

F1mlcro = 7.6
Pmlcro + lecro ( )

Since micro precision and micro recall are computed over all instances and labels
together, this score emphasizes the classifier’s global effectiveness rather than how
it performs on individual labels.

Consider a scenario with three labels L = 3 across four instances N = 4. We
summarize the true positives, false positives, and false negatives in a table:

Label | TP | FP | FN
1 1015 | 3
2 200 416
3 503 |7
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1. Calculate Micro Precision:

10+20+15 45 45

Pmicro = = = — =~ 0.789
(M0+20+15)+(5+4+3) 45+12 57
2. Calculate Micro Recall:
10 +20 415 45 45
lecro = = = — =~0.738
(M0+20+15)+(34+06+7) 45+16 61
3. Calculate Micro F1 Score:
2-0.789-0.7 2-0.582
oo = 0.789-0.738 N 0.58 ~ 0762

0.780+0.738 ~ 1527

Micro F1 gives each true/false positive and negative an equal contribution, which
is particularly useful when labels have different frequencies. Hence, Micro F1 is
especially helpful when the goal is to evaluate how well a model performs across
all predictions, rather than for each individual label, in a multilabel setting.

7.3.1  Decision Boundary Threshold Tuning

For binary classifiers in a multilabel setup, the default decision boundary (typically
0.5) might not optimize Micro F1 performance for each label. Threshold tuning allows
adjusting this decision boundary for each label, maximizing specific performance
metrics like Micro F1 score. By tuning thresholds, we adapt the sensitivity of the
model for each label based on the data distribution and the specific needs of the
application.

For a binary classifier outputting scores s; for label [, the predicted label is defined
as:

1 if
gy = s > 1, 77)
0 ifs; <1,

where 1 is the decision threshold for label [, which can be tuned based on the goal
of maximizing F1, precision, or recall for that specific label. Tuning these thresh-
olds allows balancing between false positives and false negatives across labels,
significantly impacting overall F1 performance.

For a set of thresholds {7, 7, ..., 7/} applied across all L labels, tuning can be
performed using methods like grid search, where multiple threshold values are eval-
uated to maximize the desired metric (often F1). Instead of assigning a separate
threshold for each label, using a single global threshold could serve as an alterna-
tive.
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7.3.2 Macro F1-Score

An alternative metric to consider is Macro F1-Score which offers a complementary
approach by averaging the F1 scores computed for each label individually. In a mul-
tilabel setup, this approach treats each label equally, irrespective of its frequency,
which can provide a balanced view of model performance across all labels.
Given individual precision P; and recall R; for each label {, the F1-score for each
label is:

2-Pr- R

The Macro F1-Score, F1yacro, IS the average of these per-label F1 scores:

L
1
F1macro = z ; F1[, (79)

where the Macro Preciston Pyacro:

P _Tipﬂi L (7.10)
macro — [ = [ = i - TP[ T szl .

and Macro Recall Ryacro:

1< 1& TP
Rmacro = 7 R = - = = 711
L; ! L§T|D,+FN, 7.1

Finally, the Micro F1 is heavily influenced by the performance on frequently occur-
ring labels, as it treats all TP, FP, and FN equally across labels. On the other hand,
the Macro F1 treats each label independently, providing an average score across
labels, beneficial when classes are imbalanced or certain labels are sparse.
Together, these metrics and threshold tuning provide a comprehensive evaluation
strategy for multilabel classification, enhancing model generalization and adapt-
ability to specific goals, whether precision-oriented or recall-oriented, within the
multilabel context.

7.4 Example

A Python code is provided to illustrate the learning algorithm of the multilabel
classifier for three classes:

) import numpy as np



7.4. EXAMPLE
def sigmoid(x):

return 1 / (1 + np.exp(-x))
def sigmoid_derivative (x):

return x * (1 - x)

class LinearNN:

def __init__(self, n_inputs, n_outputs):
self .weights = np.random.rand(n_inputs,
self .bias = np.random.rand(n_outputs)

if

def train(self, X, T, epochs, 1lr):

for epoch in range(epochs):
# forward propagation
y_pred = self.predict(X)

# compute gradient

n_outputs)

d_weights = np.dot(X.T, (y_pred - T) *

sigmoid_derivative (y_pred))

d_bias = np.sum((y_pred - T) * sigmoid_derivative(y_pred

), axis=0)

# update weights and bias

self .weights -= 1lr * d_weights

self .bias -= 1lr * d_bias

if epoch % 100 == O:
(

loss = np.mean(-T*np.log(y_pred) - (1-T)*np.log(l-

y_pred))

print (f’Loss at epoch {epoch}:

def predict(self, X):

{loss}’)

return sigmoid(np.dot(X, self.weights) + self.bias)

__name__ == "_ _main__":

X = np.array([[0, O, 1],
(o, 1, 11,
(1, o, 11,
(1, 1, 111)

T = np.array([[0, 0, 1],
(1, o, o],
(o, 1, ol,
(1, 1, 111D

model = LinearNN(X.shape[1], T.shapel[1])

model.train(X, T, epochs=1000000,

print ("Model weights:")
print (model.weights)
print ("Model biases:")

1r=0.001)
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print (model.bias)
print ("Predictions on training data:")
print (np.round (model.predict (X)))

Listing 7.1: Python example for mutlilabel classifier. The classifier has three output
classes.

7.5 Assignment

Implement a multilabel classification model using the Keras deep learning library
and Google colab. To load the dataset, please visit https://www.kaggle.com/
datasets/shivanandmn/multilabel-classification-dataset.


https://www.kaggle.com/datasets/shivanandmn/multilabel-classification-dataset
https://www.kaggle.com/datasets/shivanandmn/multilabel-classification-dataset




| have never claimed that | invented
backpropagation. David Rumelhart
invented it independently long after
people in other fields had invented
it. It is true that when we first
published we did not know the
history so there were previous
inventors that we failed to cite.
What | have claimed is that | was
the person to clearly demonstrate
that backpropagation could learn
interesting internal representations
and that this is what made it
popular.

— Geoffrey E. Hinton

8.1 Motivation

Deep neural networks are composed of multiple layers of neurons that can learn
complex patterns and features from the input data. However, if each layer of neurons
uses a linear activation function, such as g(z) = x, then the output of the network
will be just a linear combination of the inputs, regardless of how many layers there
are. Assume a network with L layers and the output layer is a regression problem,

then the output of the network is given by
y=wtwtr o wix
(8.1)
= Wx

This means that the network will not be able to capture any non-linear relationships
or interactions among the input variables, and will fail to model complex phenomena
that do not follow linearity.
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Table 8.1: Two-dimensional XOR gate truth table.

X1 | x2 | t
01010
011111
1T10 11
1T1110

To overcome this limitation, we use non-linear activation functions, such as sigmoid,
tanh, relu, etc. (see Figure 8.1), that can introduce non-linearity into the network.

y = WhgWET gW?g(W'x + bY) + b%) + b1 + bt (8.2)

Non-linear activation functions can map the input to a different range or domain,
such as (0, 1) for sigmoid or (-1, 1) for tanh, and can create non-linear decision
boundaries via non-linear combinations of the weights and inputs. Non-linear acti-
vation functions can also help the network to avoid saturation or vanishing gradients,
which are problems that occur when the derivative of the activation function becomes
very small or zero, and prevent the network from learning effectively.

By using non-linear activation functions in deep neural networks, we can enable the
network to learn more expressive and powerful representations of the input data,
and to approximate any continuous function

1.0{ — sigmoid 1,00 — Tanh 54 — Rely

Figure 8.1: Three different activation functions commonly used in deep networks.

One of the functions that can not be solved using linear decision boundaries is the
XOR gate that is used in design logic (see Table 8.1). If there is a linear decision
boundary can solve the XOR problem, then its equation should be given by

xiwy + oW, S 6 (8.3)

where 6 is a threshold. Since the points (1,0) and (0, 1) lie on the same side of
decision boundary, then
wy > 6

(8.4)
wy > 6
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on the other hand, the point (1, 1) lies on the other side of decision boundary:

wi+wy <6 (85)

which is a contradiction of Equation (8.4). Hence, such a linear decision boundary
does not exist. This means that there is no single line that can separate the four
points that represent the XOR table into two classes. Hence, the XOR problem can
not be solved using linear networks. To solve the XOR problem, a non-linear neural
network with at least one hidden layer is needed.

The output layer is the final layer in the network where the desired predictions are
obtained. Depending on the type and goal of the task, the output layer can have
different activation functions and loss functions.

For example, if the task is a regression problem, where the output is a continuous
value, such as predicting the price of a house, then the output layer can have a
linear activation function, such as g(x) = x, and a mean squared error loss function,
which measures the difference between the predicted and actual values.

If the task is a binary classification problem, where the output is either O or 1,
such as predicting whether an email is spam or not, then the output layer can
have a sigmoid activation function, such as g(x) = 1/(1 + exp(—x)), and a binary
cross-entropy loss function, which measures the probability of the correct class.

If the task is a multi-class classification problem, where the output is one of several
possible classes, such as predicting the type of animal in an image, then the output
layer can have a softmax activation function, such as g(x) = exp(x)/)_(exp(x)), and
a categorical cross-entropy loss function, which measures the probability of the
correct class. An example of a deep neural network (DNN) is shown in Figure 8.2.
By having a flexible output layer, deep neural networks can adapt to different types
of tasks and produce accurate and meaningful predictions.

8.2 Model

Consider a neural network model with two hidden layers and an output layer. The
activation function for all layers, including the output layer, is the sigmoid function,
ideal for a multi-class classification problem with K classes.

Let's denote:

e x: Input data vector.

o W W WBl Weight matrices for Hidden Layer 1, Hidden Layer 2, and
Output Layer, respectively.

o bl Il Bl Bias vectors for the corresponding layers.

o Al = W= 1 pll: Linear transformation for each layer (.
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softmax

Figure 8.2: A deep neural network consists of 2 hidden layers (each layer has 3
nodes) with non-linear activation such as sigmoid function. The output layer has 3
nodes and a softmax activation to support a multi-class classification problem. The
input layer has 4 nodes. The parameters — Please note the index of weight matrices
and biases were removed in the figure for simplicity— are the weights W3, W2l Wil
and the biases IJB], /3[2], b1,
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o all = sigmoid(Z): Sigmoid activation for each hidden layer.

1

o altl = softmax(z!): Softmax activation for the output layer.

8.3 Learning via Backpropagation

The backpropagation algorithm is fundamental for training artificial neural networks,
and particularly deep learning networks. It is responsible for optimizing the weights
in the network by computing gradients, allowing the network to learn from the error
made during prediction.

The algorithm is based on a simple principle: it feeds input data forward through the
network, computes the error by comparing the predicted and actual outputs, and then
propagates this error backward through the network, adjusting the weights along
the way. This iterative process is performed over multiple epochs and effectively
trains the network.

8.3.1 Forward Propagation

First, we perform forward propagation to compute the activations for each layer:
1. Hidden Layer 1:

U il 4l

a'l = S‘Lgmold(zm)
2. Hidden Layer 2:

22— w2l 4 pl2)

ad = SlgIﬂOLC|(Z[2])
3. Output Layer:
A= whlgl 4 pBl
Bl

= softmax(zm)

8.3.2 Backward Propagation

Next, we compute the gradients and propagate them back through the network:
The output layer uses the softmax activation function. We can write the softmax
activation function as:

a,; = ——— (8.6)
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Where the denominator sums over all K classes.
The cost function is cross-entropy loss, which we can write as:

K
E=-) tloga, (8.7)
i=1

Where the sum goes over all K classes.
Based on equation (6.15), the gradients are give by:

JE  daodE
I 8.8
dz 0z da (88)
0
—ty/an :
0E ’
i = | —1/a; (8.9)
—thlap,
0
where j is the index of the correct class. In addition, % is given by
a1 0 o - 0 aqdq aiay ajas - adildg
a 0 a 0 -~ O araq  azd; ads - Ardi
da =1 . . . . - . . . , , (8.10)
0z : o . : : 3 : . :
0O 0 0 - ak akaq dgdy dgd3 -+ Ogdg
Hence,
aia; 0
E 1 '
Zzzaj[ aja; | — ij |=a—t (8.11)
aka; 0
1. Output Layer:
OBl = al¥ — ¢ (8.12)
0E
2= sBlghT
FVE o (a4 (8.13)
0E
— =& (8.14)
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2. Hidden Layer 2:

o = (WBNT 6P o gl o (1 — a?) (8.15)
aaWEm _ 52(alyT (8.16)
aabi] = o (8.17)
3. Hidden Layer 1:
ol = Wi Tsl2 o gl (1 — ol (8.18)
aavﬁﬂ =ol'lx" (8.19)
a@/j _ 5l (8.20)

Here, o denotes element-wise multiplication, which is also known as the Hadamard
product. Note that these updates are performed after each iteration or epoch.
Finally, the weights and biases are updated using gradient descent:

N n
Wil = wll — ZaE (8.21)
9E"
pll — p L
pll n Zab[’] (8.22)

where n is the learning rate.

This process is repeated for multiple epochs until the network is adequately trained.
The delta term 6/ represents the error or gradient of the loss function with respect
to the pre-activation value Zl!l of layer [, ie,

oE

0 2=
0 500 (8.23)
The exact computation of 0 differs based on the layer. For the output layer (layer
3):
We use the chain rule of calculus,
3]

a8~ 9aB a3

PEE
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For the hidden layer 2, the delta term is computed using the delta term of the next
layer (output layer) and the weight matrix that connects them. This is because
the loss function depends on ZZ indirectly through zB. The derivative of the loss
function with respect to Z1% is:

O0E  OE 0% oE 028 9d?
022 943022 928 9al2 972

Using the fact that 2% = WBlalZ + Bl where WEB! and bB! are the weight matrix
and bias vector of layer 3, respectively, and applying the chain rule, we get:

(8.25)

o0E  oE oWPlald + pB))
o2 9Bl a4
The derivative of (WBlal?l + bBl) with respect to Z1?) is simply WBJ, since a'? depends
on Z% and b does not. Therefore, we can simplify the expression as:

(8.26)

JE  OE  50a”

072~ a8 9 (827)
Using the fact that % = 0P we can write this in vector form as:
dal?!
2] _ (W /BNT SB1YY
o7 =W o 828)

Recall that ol = C(Z[Z]), where g is the activation function of layer 2. Hence, we
need to multiply 6/ by the derivative of g with respect to z1%, which is denoted by
g'(Z1%). This gives us:

o = (wWBhT 58 o g'(29) (8.29)

where o denotes element-wise multiplication, also known as the Hadamard product.

: Lo : _ A
If ' we assume that g is a sigmoid function, such as g(z) = 55—, then ¢'(z) =
g(z)(1 — g(z)), and we can simplify the expression as:

5l — (WB])TéB] od¥o (1— C/m) (8.30)

For the hidden layer 1, the delta term is computed in a similar way as for hidden
layer 2, using the delta term of the next layer (hidden layer 2) and the weight matrix
that connects them.

The back-propagation algorithm is illustrated in Figure 8.3.
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softmax |

Figure 8.3: The back-propagation algorithm.

8.4 Example

A Python code is provided to illustrate the learning algorithm of the XOR problem
and plot the decision boundary between the two classes:

2 import numpy as np
; import matplotlib.pyplot as plt

5 def sigmoid(x):
6 return 1 / (1 + np.exp(-x))

8 def sigmoid_derivative(x):
9 return x * (1 - x)

X0R input

= np.array([[0,0], [0,1], [1,0], [1,111)
X0R output

= np.array ([[0],[1],[1],[0]11)

=< H MR

¢ np.random.seed (0)
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# initialize weights and biases randomly with mean O
w0 = 2*np.random.random((2,4)) - 1
b0 = 2*np.random.random((1,4)) - 1
wl = 2%np.random.random((4,1)) - 1
bl = 2*np.random.random((1,1)) - 1

# Learning rate

1r = 0.1

# Number of iterations
epochs = 10000

for epoch in range(epochs):
# Forward propagation
10 = X
11 sigmoid (np.dot (10, wO) + DbO)
12 sigmoid (np.dot (11, wl) + bl)

# Backward propagation
12 _error =Y - 12
12_delta = 12_error * sigmoid_derivative (12)

11 _error = 12_delta.dot(wl1.T)
11 _delta 11_error * sigmoid_derivative (11)

# Update weights and biases

wli += 11.T.dot(12_delta) * 1r

bl += np.sum(l2_delta, axis=0, keepdims=True) * 1r
w0 += 10.T.dot(l1_delta) * 1r

b0 += np.sum(ll_delta, axis=0, keepdims=True) * 1lr

; # Plot decision boundary
> h = 0.01

x_min, x_max = X[:, 0].min() - 0.5, X[:, O].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5

XX, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,
y_max, h))

10 = np.c_[xx.ravel (), yy.ravel()]

11 = sigmoid(mnp.dot (10, wO) + DbO)

12 = sigmoid(mnp.dot(1l1l, wl) + bl)

# threshold the output
Z = (12 > 0.5) .astype(int)

Z = Z.reshape (xx.shape)
plt.contourf (xx, yy, Z, cmap=plt.cm.Spectral)

; plt.scatter(X[:, 0], X[:, 1], c=Y[:, 0], cmap=plt.cm.Spectral)



85. ASSIGNMENT

65 plt.savefig(’xor_decision_boundary.png’, dpi=600)

Listing 8.1: Python example for plotting the XOR decision boundary.

In Figure 8.4, the 2D plot for the XOR problem results in a decision boundary that
separates the space into four regions. Depending on how the network learns, the
shape of the boundary may vary, but it will always be able to separate [0, 0] and [T,
1] from [0, 1] and [1, O]

1.25
1.00
0.75
0.50
0.25
0.00

-0.25

-0.50
-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

Figure 8.4: The decision boundaries between two classes for the two-dimensional
data XOR problem.

8.5 Assignment

Implement an optical recognition of handwritten digits (multiclass classification task)
using deep neural networks. The Keras deep learning library and Google colab can
be used for this task. To load the dataset, please visit https://archive.ics.uci.
edu/ml/datasets/Optical+Recognition+of+Handwrittent+Digits.


https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits




Deep Learning (DL) is far, far more
than old-style neural nets with
more than a couple of layers. DL is
an "architectural language” with
enormous flexibility. The bestiary of
DL architectural elements has
diversified tremendously over the
last decade.

— Yann LeCun

Convolutional Networks or Convolutional Neural Networks (CNNs) are a class of
deep learning models designed for processing and analyzing structured grid data,
such as images and videos. CNNs have proven to be highly effective in various
computer vision tasks due to their ability to automatically learn hierarchical rep-
resentations of features directly from the data. In this chapter, we will introduce
CNNs and address their usage to extract salient features automatically from images
without using feature engineering approaches.

9.1 Motivation

The shift from Feed-Forward Networks (FFNs) to Convolutional Neural Networks
(CNNSs) in the context of image processing is driven by several key advantages that
CNNs offer over FFNs. Here's an overview of the motivations and benefits:

1. Handling high dimensionality: FFNs treat each pixel in an image as a separate
input feature, resulting in a very high-dimensional input space. For instance, a
small image of 64x64 pixels with three color channels (RGB) has 12,288 input
features. This high dimensionality leads to a large number of parameters,
making the network computationally expensive and prone to overfitting. CNNs
utilize local receptive fields (filters) that process small regions of the image
at a time. This significantly reduces the number of parameters as the same
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filter is applied across different regions of the image. By focusing on local
patterns and reusing parameters, CNNs handle high-dimensional data more
efficiently.

Parameter sharing: FFNs use separate parameters for each input feature,
leading to a large number of unique parameters. This lack of parameter shar-
ing results in high computational and memory requirements. CNNs employ
the concept of parameter sharing, where the same filter is used across dif-
ferent parts of the image. This reduces the number of unique parameters
and enhances computational efficiency. Parameter sharing also allows CNNs
to detect features regardless of their position in the image, contributing to
translation invariance.

. Translation invariance: FFNs do not have an inherent mechanism to recognize

patterns irrespective of their spatial location in the image. This means that
the same object in different positions would be treated as different inputs,
requiring more training data to learn positional variations. The shared filters
in CNNs enable the network to recognize features regardless of their location
in the image. This translation invariance allows CNNs to generalize better
and recognize objects in varying positions.

Hierarchical feature learning: FFNs treat all input features equally and do
not inherently capture hierarchical patterns in the data. This makes it chal-
lenging to learn complex structures and relationships within the image. CNNs
learn hierarchical features, where early layers capture low-level features (e.g,,
edges, textures) and deeper layers capture high-level features (e.g., shapes,
objects). This hierarchical learning mimics the human visual system and en-
ables CNNs to build more abstract and meaningful representations of the
input data.

Dimensionality reduction through pooling: FFNs do not have a built-in mech-
anism for reducing the dimensionality of the input data, often leading to an
overwhelming number of parameters. CNNs use pooling layers (e.g., max
pooling, average pooling) to downsample the feature maps, reducing their di-
mensionality while retaining important information. - Pooling layers help in
reducing computational complexity and making the network more robust to
spatial variations and noise.

CNNs have achieved state-of-the-art performance in various image recognition
benchmarks and competitions (e.g, ImageNet). They require less manual feature
engineering as they can learn features directly from raw image data, leading to
more accurate and efficient models. In the upcoming sections, we will present an
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overview of the convolution operation, the pooling operation, and the learning prob-
lem associated with convolutional neural networks (CNNs).

9.2 Convolutions

9.2.1 Definition

In one dimension, convolution is a mathematical operation that combines two func-
tions to produce a third function. The convolution of two functions x(t) and w(t) is
denoted as (x * w)(t) and is defined by the integral:

(x * w)(t) = / x(t)-w(t—1)dt (9.1)

—0Q
Alternatively, for discrete signals, the convolution of two sequences x[n] and w|n] is
defined as:

o)
(x * w)[n] = Z x[k]- wln — K| (9.2)
k=—00

In simpler terms, for each point t or n, you multiply the values of the two functions
at different points and sum up these products over all possible points. This process
is repeated for each point in the range of t or n to obtain the resulting convolution
function or sequence.
Convolution is a fundamental operation in signal processing and plays a crucial role
in various fields, including image processing, audio processing, and, more recently, in
the context of convolutional neural networks (CNNs) in deep learning. In the context
of CNNs, the convolution operation is applied to learn features from input data,
and the kernels (filters) used in the convolution are adaptively adjusted during the
training process. The convolution operation for two-dimensional data (e.g. images)
is defined as follows:

m—1n—1

sy =(orwlifl=) ) Xt Wik 93)

k=0 (=0

In this equation, x represents the input, s represents the output, w represents the
kernel, and m and n are the height and width of the kernel, respectively. Please
note that the convolution operation is commutative:

m—=1n-—1

sij = (wxx)[i, j| = Z infk,jfl C Wi I (9.4)

k=0 (=0
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So, in practice, when working with convolutional layers in deep learning frame-
works, you would use the term "convolution,” but the operation performed is a cross-
correlation without flipping the kernel. The equation for this operation would be:

m—1n-1
sy =(X@Wijl=) > Xitkjit Wi (95)
k=0 (=0
The cross-correlation operation is computed by summing the element-wise product
of the input and the kernel as it slides over the input. The cross-correlation operation
simplifies the implementation and doesn’t affect the network’s ability to learn and
generalize from the data. The choice between convolution and cross-correlation does
not affect a neural network’s ability to learn from data because the convolutional
filters (kernels) themselves are learnable parameters, and the network adjusts them
during the training process.

9.2.2 Examples of the 1D cross-correlation operations

Cross-correlation is a measure of similarity between two sequences as a function
of the displacement of one relative to the other. In the context of 1D input data and
a filter, cross-correlation can be used to find how much one sequence (the filter)
matches with a portion of another sequence (the input data) as the filter slides over
the input.

Let's walk through a simple example of 1D cross-correlation with a vector input
of 5 elements and a kernel (filter) of 3 elements in Figure 9.1." We perform the
cross-correlation operation step by step. In each position, we calculate the sum of
element-wise multiplication between the input and the kernel at that position. The
resulting vector is the cross-correlation output.

nput [ [2 ][ ]=] HEEN BRI EIEE

®
Kernel HREIEEREIREE

1x1 +2x0 + -1x-1 2x1 +-1x0 + 1x-1 -1x1 +1x0 + -3x-1

Figure 9.1: An example of 1D cross-correlation output [24].

Padding refers to the process of adding additional values around the borders of the
input feature map or image. Padding is an important concept in CNNs as it helps to

1 https://cs231n.github.io/convolutional-networks/
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preserve the spatial dimensions of the feature maps during the convolution operation.
If you have a specific padding strategy, the results may vary. For example, to ensure
that the output vector size equals the input vector size, we need to zero-padding
the input vector from the left and right (i.e. for positions where the kernel extends
beyond the input boundaries) In Figure 9.2, we add "0" to the left and right of the
input. Hence, the cross-correlation output will maintain the same size as the input.

mput (o[ [z [ [ [o[o]  [o [ [2][[e[[e [ [ ][ o [o ][ [o]e]

®
kemel [Tor] === (LI CEE CRT L]

Ox1 +1x0 + 2x-1  1x1 +2x0 + -1x-1 2x1 + -1x0 + 1x-1 -1x1 +1x0 + -3x-1 1x1 + -3x0 + Ox-1

U

Figure 9.2: An example of 1D cross-correlation output where the zero-padding is
implemented.

The stride is a hyperparameter that determines the number of elements by which
the convolution kernel slides over the input during the cross-correlation operation.
Specifically, the stride defines the step size of the kernel as it moves across the
input. A stride of "1" means the kernel moves one element at a time, a stride of
2" means the kernel moves two elements at a time, and so on. The stride has a
significant impact on the size of the output. We show an example where the amount
of padding added to the input is "1" element and the stride which is the number of
elements the kernel moves at each step is 2" in Figure 9.3.

nput [0 | [2[][=fo]  [efifef [o]o ] ] []s]0]

Q@
Kernel Lo fofo] Ll ] [l o]

0x1 +1x0 + 2x-1 2x1+-1x0 + 1x-1  1x1 + -3x0 + Ox-1

2]

Figure 9.3: An example of 1D cross-correlation output where the zero-padding = 1
and the stride = 2.

In general, we can compute the size of the output vector, o, as a function of the input
vector size n, the receptive field size of the kernel f, the stride with which they are
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applied s, and the amount of zero padding used p on the border as follows:

0= {””Sp_fJ +1, (9.6)

where |-| denotes the floor function. The floor function is used to ensure that the
output size is an integer, representing the discrete grid positions where the filter is
applied.

9.2.3 Examples of the 2D cross-correlation operations

In the context of image processing and computer vision, 2D cross-correlation is a
fundamental operation used to measure the similarity between two 2D signals, such
as images. The 2D cross-correlation is defined in Equation (9.5). The key aspects
of 2D cross-correlation are:

e Sliding window: The kernel is slid over the entire input image, with the center
of the kernel positioned at each element in the image.

e Element-wise multiplication: At each position, the values of the kernel are
multiplied element-wise with the corresponding values in the input image.

e Summation: The results of the element-wise multiplications are summed up
to produce the final cross-correlation value at the position.

A simple example of 2D cross-correlation with an input matrix of 6 x 6 elements and
a kernel (filter) matrix of 3 x 3 elements in Figure 9.4. When the stride parameter
is 2, the output is given in Figure 9.5. In general, we can compute the size of the
output matrix as a function of the input matrix size n x n, the receptive field size of
the kernel f x f, the stride with which they are applied s, and the amount of zero
padding used p on the border as follows:

o1x02=[[”+25’3_'[J +ﬂ><[{”+25p_fJ +1] (97)
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3|lo|1]|2]|7]4
1158|931
2|7 1]2|5]|1]3
IanIt o1 |3]|1]7]|s8
41211628

214|523 ]o9 5|-4]0]|8s

® 10|22 |3

110 |- —= 02|47

Kernel 110 |- 3 -2]-3]|-16

1101

Figure 9.4: An example of 2D cross-correlation where the input is a matrix of 6x6

elements and the kernel is a matrix of 3x3 elements [25].

Input

®
110 | 1
Kernel 1o |1
110 | 1

-5

Figure 95: An example of 2D cross-correlation where the input isFor example, the
height of the input equals to the height of the kernel a matrix of 6 x 6 elements, the

kernel is a matrix of 3 x 3 elements, and the stride of 2.

In the case where the height of the 2D kernel is equal to the height of the 2D
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input data, in this special case, the 2D cross-correlation operation can be reduced
to a 1D cross-correlation along the width dimension. For example, the height of the
2D input matrix equals the height of the kernel (both are 3) in Figure 9.6. Hence,
the 2D cross-correlation operation reduces to 1D cross-correlation along the width
dimension.

Input | " [5|8[°]°¢]"

®
-5 4 0 8
1 0 1 :>
Kernel 10|
1 0 1

Figure 9.6: The 2D cross-correlation operation can be reduced to a 1D cross-
correlation along the width dimension, where the height of the 2D kernel is equal
to the height of the 2D input data.

9.2.4 Examples of the 3D cross-correlation operations

Imagine we have a 3D image with dimensions 6 x 6 x 3 instead of a 2D image. How
would we apply convolution to this image? We would use a 3 x 3 x 3 filter instead
of a 3 x 3 filter. Let's see an example:

Input: 6 x 6 x 3

Filter: 3 x 3 x 3

The dimensions represent the height, width, and channels of the input and filter.
Note that the number of channels in the input and filter must be the same. This will
result in an output of 4 x 4. Let's visualize this example in Figure 9.7:

Since the input has three channels, the filter will also have three channels. After
convolution, the output will be a 4 X 4 matrix. The first element of the output is the
sum of the element-wise product of the first 27 values from the input (9 values from
each channel) and the 27 values from the filter.
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Input

Kernel

Figure 9.7: An example of cross-correlation over a volume [25].

Instead of using only one filter, we can apply multiple filters simultaneously. For
instance, the first filter might detect vertical edges, while the second filter identifies
horizontal edges in the image. Using multiple filters alters the output dimensions.
Therefore, instead of a 4 x 4 output as in the previous example, we would obtain a
4 x 4 x 2 output if two filters were used as shown in Figure 9.8.
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Kernels

Figure 9.8: An example of cross-correlations over volume using multiple filters [25].

9.3 Resolution control (subsampling)

Max pooling and average pooling are two common down-sampling techniques used
in Convolutional Neural Networks (CNNs) to reduce the spatial dimensions of the
input data. They both help in reducing the number of parameters and computational
cost, and they also provide some degree of translation invariance.

Max pooling selects the maximum value from a defined region (pooling window) of
the input data. This operation highlights the most prominent features in that region.
A fixed-size window (e.g., 2x2 or 3x3) slides over the input feature map. For each
window position, the maximum value within that window is selected and assigned to
the corresponding position in the output feature map. The window slides according
to a specified stride, typically 2, meaning the window moves by 2 elements at a time.
An example of the max pooling operation is shown in Figure 9.9. The output size of
a max pooling operation for 2D input data can be determined using the following
equation:

0= {”_TZPJ +1 (9.8)

where o is the size of the output, n is the size of the input, f is the size of the filter
(pooling window), p is the amount of padding applied, s is the stride of the pooling
operation, and |-| denotes the floor function, which rounds down to the nearest
integer. If the input size n is 4, the filter size f is 2, the padding p is 0, and the
stride s is 2, the output size o is calculated as follows:

O:[“ZZW)J+1:EJ+1=1+1=2 9.9)
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Thus, the output size is 2 in each dimension.
The advantages of max pooling are:

e Reduces the dimensionality of the feature map while retaining the most im-
portant features.

e Helps to reduce overfitting by providing an abstracted form of the input rep-
resentation.

e Provides translational invariance to small shifts and distortions in the input.

Similar to max pooling, average pooling calculates the average value from a defined
region (pooling window) of the input data. This operation smooths the feature map
by averaging the features in each region.

1 2 3| 4

5 & [ 7 | & :[:':}

14 | 16

13 14 |15 | 16

Figure 9.9: For a 4x4 input matrix and a 2x2 max pooling window, the output is a
2x2 matrix.

9.4 Model and learning problem

9.41 Convolutional layers

To compute the gradients during backpropagation in the convolutional layer [26], let
us assume that the convolutional layer has only one channel. Hence, the equations
for computing the gradients during backpropagation simplify slightly.

Let's consider the convolutional layer with a single-channel input o'~ and output
z!. The forward pass is computed as follows:

=1 =1 (]

a a a
[ [ 00 01 02 U
20 01| — | =1 =1 =T g | Yoo Wor |l (9.10)
A Sl Ui = d3q Oy (- '
10 ‘N1 (=1 =1 =] Wio Wi
— G0 91 4
Z will

all=1]
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[Sa——C oGl [0 =1 (0 =] [ =10l

200 = Wooloo ~ T Wo1lor T Wiplyg — + Wiy
[ [1 1] [ _[=1] [ [l 1] ] [l 1] [
201 = Woolor T Wprlop — + Wiplyq — + Wiy, + bl

(9.11)
Zlg = Wg(})c,qo 1, W}ﬂ a[111 Ui wﬁ% C/[zlo” n qu 0“1 1, 0

0 [i—1 0 [i—1 0 [i—1 0 (1=
Zir = wodyy | wgay | wigdyy | wapay, |+ b

l

The gradient of the loss E with respect to the weight matrix w' can be computed as

follows:
oE o0E [—1 ot —1 ot — o0E [—1
— = [1]'[ brT,[ ]+T,[ ]+T [ﬂ}
dwgy 97 9z 9739 dzy

okt ok ok okt _ ok
PTRST [(;1”+W' 02 1]+T'C’[1[1”+ e ay, "
dwy 07y 0z 0739 dzy (9.12)
JoF  OF (- OE - 0E (- 0E (=) '
67[[] = P [[] . CI1O + GT . CI” + W : CIZO + 3z U] . Clz1

W10 ) 20 210 1

0E aE oE oE _ 0F

0= 500 ! I 'C’[{Z”*W'“& Ut P dh,

aw;; 92y, 021 0z 0z3;

Assume Z!is m x n dimensional

m—1n-1 [
[— 1
DI (LN
i=0 j=0
m—1n-1
=) Z C’/J+t g+j [1 (913)
i=0 j=0 0z
m—1n-1 o 0
(-1 l
= Cprig+j Oi
i=0 j=0
o sl oE . :
where 0;; = 7. It can written as follows:
L)
T T TR I R R o oF  of
awi aw R I ] oz 97
o of | = oo Gy dp [ @1 aF GF (914)
[i [i — [i [
A ST ] I il
OE 9L
owll al=1l o2

We observe that the gradient with respect to the weights is a cross-correlation
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operation as well. For the bias term:

m—1n-—1

(1]
abu leZd j (9.15)
The computation of 55471] is given by:
0E 0E _ [[]
(96/“ 1l aZ([)o oo
ot B okt [/] oE [l
aa[z 7 ;éo Wor + FE ([)1 “Woo
ol= B ot [l
d /“ i az([ﬂ o
: (9.16)
okt B okt _W“] n £ _ W[[] N 0E [l okt WM
3} I[Z i aZ([)o ! aztln 1 aZ1lo 9 1[1 %
o= ot [l
aCI[l M- aZ‘H A
e = i = B
dag | dag | dag, 0 9t 9E .y
d d d 0z} 0z} w
60[1[7” 60[1{7” 00[117” ) LEO Lg 0 ® m E(])] (917)
of  _of  _of oz, 02, Wor  Woo
60[226” 00[2[17” Oa[zl;” 0 0 0 0 Rotated wl
ajﬁ” Padded %
hence,
5, 1= g'(z) o (pad(a") ® rot180(w!') ) [7, ] (9.18)

In this equation: g’(z[-j-]) represents the derivative of the activation function applied to
the output of the convolutional layer at position (i, j) and wl!l represents the weight
matrix of the convolutional layer. The ® denotes the cross-correlation operation and
pad(dl) represents the padded error term from the next layer.
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9.4.2 Pooling layers

In 2D max pooling, the output at position (i, j) is the maximum value within the filter
window applied to the input:

Oi,j = max Xi~s+m,jvs+n (919)
(m,n)efilter window

where: - X is the input matrix. - O is the output matrix. - s is the stride. - The filter
window is the region of the input matrix over which the filter is applied, typically
of size f x f.

In the backward pass, the gradient is propagated to the position in the input matrix
that contributed the maximum value to the output:

aL :
oL a0, if Xi~s+m,j-5+n = O[,j (920)

a)(1'-5+/n,j~s+n 0 otherwise

where % is the gradient of the loss with respect to the output at position (i, j).
LJ

In 2D average pooling, the output at position (i, j) is the average value within the
filter window applied to the input:

1
Oi,j = ﬁ Z X[-s+m,j»s+/7 (921)
(m,n)€efilter window
where: - f is the filter size.
In the backward pass, the gradient is equally distributed among all positions in the
filter window:

daL 1 dL
= 5o (9.22)
aXi~5+m,j-5+n f aOi,j
where % is the gradient of the loss with respect to the output at position (i, j).
L

These equations describe how the gradients are calculated and propagated back
through the pooling layers during backpropagation in a convolutional neural net-
work.

9.5 An Example

LeNet-5 is a classic convolutional neural network architecture that was proposed
by Yann LeCun et al. in 1998 [27] It was designed primarily for handwritten digit
recognition tasks, such as the MNIST dataset. LeNet-5 played a significant role in
popularizing convolutional neural networks and was a pioneering architecture for
deep learning.

Here are the key details of the LeNet-5 architecture (L.e. Figure 9.10):
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C3: f. maps 16@10x10

INPUT gézfgigge maps S4: f. maps 16@5x5

32x32

S2: f. maps
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Figure 9.10: LeNet-5 is a simple convolutional neural network for handwritten char-
acter recognition [27]

—_

. The input to LeNet-5 is a grayscale image of size 32x32 pixels.

2. The first layer is a convolutional layer with 6 filters. Each filter has a size
of 5x5 and the convolution is followed by a sub-sampling (pooling) operation.
The subsampling operation is typically done using average pooling with a
window size of 2x2 and a stride of 2. The idea of using subsampling layers is
to reduce the spatial dimensions while retaining the important features.

3. The second layer is another convolutional layer with 16 filters. Each filter
has a size of 5x5. Similar to the first layer, this layer is also followed by a
subsampling operation.

4. After the convolutional layers, the output is flattened into a vector. This flat-
tened vector is then fed into a fully connected layer. LeNet-5 has three fully
connected layers with 120, 84, and 10 neurons respectively. The final fully
connected layer has 10 neurons, corresponding to the 10 possible classes in
the MNIST dataset.

5. LeNet-5 uses the sigmoid activation function in all layers except for the out-
put layer. The output layer typically uses the softmax activation function to
produce a probability distribution over the classes.

The LeNet-5 architecture is trained using the backpropagation algorithm with gradi-
ent descent optimization. The loss function used is typically the cross-entropy loss.
During training, the weights of the network are updated iteratively to minimize the
loss and improve the network’s performance.

LeNet-5 achieved remarkable performance on handwritten digit recognition tasks
and demonstrated the effectiveness of convolutional neural networks for image clas-
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sification. It laid the foundation for more advanced CNN architectures that fol-
lowed [28, 29].

9.6 Assignments

Please implement LeNet-5 network using Keras and CGoogle colab. To load the
dataset, please use the method: tfkeras.datasets.mnist.load_data).






Recurrent nets are in principle
capable to store past inputs to
produce the currently desired
output. Because of this property
recurrent nets are used in time
series prediction and process
control. Practical applications
involve temporal dependencies
spanning many time steps, e.g.
between relevant inputs and
desired outputs. In this case,
however, gradient based learning
methods take too much time. The
extremely increased learning time
arises because the error vanishes
as it gets propagated back.

— Sepp Hochreiter

Recurrent neural networks, and in particular, Long Short-Term Memory (LSTM) net-
works, have revolutionized the field of sequence modeling. LSTMs provide a pow-
erful framework for capturing long-range dependencies in sequential data, enabling
machines to understand and generate complex sequences with remarkable fluency
and precision. In this chapter, we will introduce RNNs and LSTMs and address the
difficulty to train these networks.

10.1 Model

A simple RNN is a type of artificial neural network that is designed to process
sequential data. It has a recurrent structure that allows it to maintain an internal
state (hidden state) that captures information from previous steps in the sequence.
Unlike linear dynamical systems, RNNs are nonlinear models and can learn complex
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patterns and dependencies in sequential data. The hidden state of an RNN is
updated at each time step based on the current input and the previous hidden state,
using nonlinear activation functions. RNNs possess a recurrent connection enabling
them to store information about past inputs within their hidden state.

Unlike feedforward neural networks, which process data in a single forward pass and
have no memory of past inputs, RNNs have a recurrent connection that allows them
to maintain information about previous inputs in their hidden state. A dynamical
system may be defined by:

he = fh(Xt, /7t—1)
ye = fo(hy) (10.2)

=
o

A simple RNN [30] comprises three layers: an input layer, a hidden layer, and
an output layer as shown in Figure 10.1. The input layer receives sequential data
during each time step, the hidden layer retains memory and processes the sequential
information, and the output layer generates the final output or prediction.

Figure 10.1: An unfolded simple recurrent neural network. The matrices W,, Wj,, W,
are shared between time steps. Unfolding a simple RNN helps to illustrate how
the hidden state is passed along and updated as the network processes sequential
data. It provides a visual representation of the temporal dependencies and the flow
of information within the RNN.

Let's define the forward pass equations of the simple RNN model:
e Hidden state activation:

21 = Wihi_1 + Wixe + by, (10.3)
h: = tanh(z") (10.4)
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e Output activation:

70 = Wyhi + b,

y¢ = softmax(z;)

= =
o O

The hidden activation function is tanh and its derivative is 1 — tanh?(x). The output
activation function is softmax, which for a specific class i is defined as:
y

softmax(z!) = — (107)

Zj ez/”
Where y represents the output and [ represents the target. The activations of the
hidden state and output are z" and zY respectively. The weight matrix connecting
the hidden layer to the output is W,
Let's denote dpeurons @s the number of neurons in the hidden layer and dinputs as the
number of input features. Then:

® X; is a vector of size dinputsx1 containing the inputs at time t.

® hi_q is @ dpeuronsx1 vector containing the hidden state of the previous time-
step. At the first time step, t = 0, there are no previous hidden state, so
/7[_1 = 0.

e W, is a dneurons X dinputs Matrix containing the connection weights between
input and the hidden layer.

o W) is a dheurons X dneurons Matrix containing the connection weights between
two hidden layers.

e W, is a doutput X dneurons Matrix containing the connection weights between
the hidden layer and the output.

e by is a vector of size dpeuronsx1 containing each neuron’s bias term.
e by, is a vector of size doyrpuex1 containing the bias term of the output layer.

® y; is a vector of size dyypuex1 containing the layer’s outputs at time step t.

RNNs are designed to handle sequential data with varying lengths, dividing the
input data into multiple time steps, where each step represents an element of the
sequence.

A distinguishing feature of RNNs is the recurrent connection, which allows the
network to retain information across time steps. At each time step, the hidden layer
takes input from the current step as well as the hidden state from the previous step,
enabling the hidden state to carry information from past steps. Moreover, the same
set of weights and biases is used at each time step, enabling effective processing of
sequences with different lengths.
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10.2 Learning Problem

RNNs are trained using backpropagation through time (BPTT), an extension of the
standard backpropagation algorithm that accounts for the recurrent nature of the
network. BPTT calculates gradients and updates the weights and biases to minimize
the discrepancy between the predicted output and the target value. For the back-
ward pass, we will compute the gradients of the loss with respect to the activations
and parameters. Let's define the loss at each time step as:

Ee = — Z ltilog yy (10.8)

This is the categorical cross-entropy loss for softmax outputs at time t. The overall
loss is given by

.
E= Z Ee(le, ye) (109)
t=1
.
— =Y (logy; (10.10)
t
.
=~ ] log [softmax(z{)] (10.11)

t=1

Firstly, let's define the quantities 8/ and o/':

gy OE

oY =
' 0z{

(10.12)

. . . . 4 .
To get the gradient with respect to the pre-activation z{, we need to apply the chain

rule to differentiate L

@Et _ dEt % (:)_Lj[
dz{  dy: 97/
This derivative is calculated as the derivative of the loss function with respect to
the output, multiplied by the derivative of the softmax activation function. Using the

properties of the softmax function and the cross-entropy loss (i.e. see Chapter 6 ),
the above simplifies to:

(10.13)

o =ye— Lt (10.14)

Now let's define o/':
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E
of = 9 . (10.15)
d0z{

This derivative includes all paths through the computational graph where z!' affects
the loss function E. This is calculated using the chain rule as:

n  OE;dhy 0E; 62? 0E; C')Zf+1 oh;
t " 9h, Jah, h o of h (10.16)

t 0z, dz¢ dhy — dz!, dhe | dz

Substituting 6 and 5f+1 and the derivative of the tanh function:
o = (Wjéﬁ + W,ﬁé[’H) O (1 — tanh?(zM) (10.17)

This equation is the form of the backpropagation through time (BPTT) for hidden
states in RNN. The © denotes the Hadamard product (element-wise multiplication).
The term 1 — tanhz(zf) is the derivative of the tanh activation function. The terms
o7 WUT and 5[7“ W, represent the influence of the error at the output at time t and
the influence of the error at the hidden state at time t + 1 respectively. They are
both backpropagated to the hidden state at time t through the respective weight
matrices W, and Wj.

For an input sequence of length T, the gradient accumulations are given by

For the weight matrix W,:

T L T
oF 0F; 0z/ y T
= E = E oF 1 10.18
aWU — azly awy = t 7{ ( )

For the bias by:

T T
oE oF, L
=) —=) & (10.19)
y ¢
dby — 07 =
For the recurrent weight matrix Wj:
r T
oE 05 (:)Z;.LI h T
ow, Z 0z OW,, - Z of - hiy (10.20)
t=1 t=1

For the input weight matrix W;:

T T
oF OF, 0z A
=y LS 1021
oW, ~ &= ozf AW, ; o 1921)
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For the bias by:
-

T
OF oE, ,
= =t _ 0 10.22
0/3/7 ; aZ? ; t ( )

After accumulating the gradients over the entire sequence, you can use an optimiza-
tion algorithm (like SGD, Adam, etc.) to update the weights and biases:

OF

W=W—n—r1 1023
5w ( )
OF

b=b—n— 10.24

b 35 ( )

where n is the learning rate.

Simple RNNSs face a challenge known as the vanishing or exploding gradients prob-
lem [31]. This arises when gradients in the network become excessively small (van-
ishing gradients) or large (exploding gradients) while processing lengthy sequences.
This issue hampers the training process and the model’s ability to retain long-term
dependencies.

10.3 The Difficulty of Training Simple RNN

Figure 10.2: Propagating gradients through the unfolded RNN. The memory unit,
h¢, is a function of its previous memory unit h¢—q. Hence, we differentiate h3 with
hy and hy with hy.

In the following Figure 10.2, we have three-time steps. Then

O; _ 0E;0ys 0hs | OF30ys0hs 0hy | O30y 0hsoh Ol oo
oW, — dys 0hs 0W, | dys 0hs dhy OW, | dys dhs 0hs 0hy AW, '
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where the first term is a direct application of the chain rule. However, we have to
take into consideration the previous time steps. So, we differentiate the cost function
with respect to memory units h, as well as h4 taking into consideration the weight
matrix Wj,. Please note that a memory unit h; is a function of its previous memory
unit hy—1 according to the recursive formulation (h; = f(Whhi—1+ Wixc+bp)). Hence,
we differentiate hs with hy and hy with hy.

Hence, at the time-step t, we can compute the gradient and further use backprop-
agation through time from t to 1 to compute the overall gradient with respect to
W

t

(:)Et 05 @gt aht (9/7/<
= — 10.26
(:)\/\//1 ; (9_th (9/7t a/7k (:)\/\//7’ ( )
and g//—;; can be computed using a chain rule. It can be written as follows
t t
oh;
aEt _ Z @Et 6yt 1 (9/7/< (1027)
(3\/\//7 1 a_th 0/7t k1 0/7j-_1 0\/\//,

where

t

oh; S — oh;  0hy dhi 1 Ohiyq
- W, diaq[f'(h_1)] = 22t — 1028
[ ] oh [ ] Wil diaglf'(hj1)] he = b dh " ong . 1028)

j=k+1 j=k+1

Since we differentiate a vector function with respect to a vector, the result is a
matrix (called the Jacobian matrix) whose elements are all point-wise derivatives.
Aggregate the gradients with respect to W), over the whole time-steps with back-
propagation, we can finally yield the following gradient with respect to W,:

(10.29)

oW, Ay 0h; oy

OE _i " 9E, dy; oh; ohy
&= 4= 0y, oh; dhy AW,

k=1

Hence:

T t

oF 0E,

W => > ,t [ ] Wi - diaglf (Wax; + Wihj 1 + ba)l - F/(Wexk + Wahi1 + ba)h(_
h .
1 ‘

ohy
t=1 \ k=1 j=k+1
' _ 1 ; oh;
Let's take the norms' of these Jacobians h
J

(10.30)

"The 2-norm may be interpreted as an absolute value, of the Jacobian matrix.
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oh;
H U < (|wy ||| diaglf ()| (1031)

0/71',1

In this equation, we set yyy, the largest eigenvalue associated with HWhTH as its
upper bound, while y, largest eigenvalue associated with Hdlag[f’(hj,ﬂ]H as its
corresponding upper-bound. Thus, the chosen upper bounds yy and y, end up
being a constant term resulting from their product:

a/"lj
(9/71-,1

’ < Ywvh (10.32)

Depending on the chosen activation function f, the derivative f* will be upper
bounded by different values. For hyperbolic tangent function as shown in Figure
10.3, we have y, = 1 while for sigmoid function, we have y, = 0.25.

The gradient 3 a” is a product of Jacobian matrices that are multiplied many times,
t — k times in our case:

dh;

—k
= 10.33
| ah < (ywva)' ( )

ah,
dhy

The equation can be paraphrased as follows: The magnitude of the partial derivative
of the hidden state at time step t with respect to the hidden state at time step k
is equal to the magnitude of the product of the partial derivatives of consecutive
hidden states from time step k + 1 to time step t. This magnitude is bounded by
the value of the product of two factors, yy and yj, raised to the power of t — k.
When the sequence becomes longer, meaning there is a larger distance between
time steps t and k, the equation shows that the value can either become very small
or very large quickly. This violates the assumption of locality in gradient descent?.
The outcome depends on the value of gamma: if it is large, the gradient can explode
(become very large), and if it is small, the gradient can vanish (become very small).
These problems highlight that when the gradient vanishes, it implies that the earlier
hidden states do not significantly influence the later hidden states. In other words,
the network fails to learn long-term dependencies, as the information from earlier
time steps becomes negligible or irrelevant in the later ones.

Assume y;, = 1 then if the norm of the weight matrix WhT is less than 1, each time we
multiply the gradient by ||W,||, the magnitude of the gradient decreases. Imagine
multiplying a number by 0.5 repeatedly - the result gets smaller and smaller. This is

?Both vanishing and exploding gradients violate the assumption of locality in gradient descent
because they disrupt the smoothness and stable progression of the optimization process.
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Figure 10.3: The hyperbolic tangent activation function and its derivative.

why [|W,T|| < 1 is a sufficient® condition for the gradients to vanish. It guarantees
vanishing gradients because multiplying by a number less than one repeatedly
will always cause the result to tend towards zero. However, it's not a necessary
condition because there are other reasons gradients might vanish, such as saturating
activation functions.

On the other hand, if the norm of the weight matrix \/\/hT is greater than 1, each multi-
plication by ||W,|| increases the magnitude of the gradient. Think about multiplying
a number by 2 over and over - the result gets larger and larger. So |[[W,[|| > 1 is
a necessary condition for gradient explosion. But just because ||W,"|| > 1 doesn't
guarantee that the gradients will explode. Other factors might prevent this, such as
gradient clipping or careful initialization of the weights. This is why [[W,"]| > 1 is
necessary, but not *sufficient”, for gradient explosion.

Remember that these are simplifications - in reality, the behavior of the gradients
in an RNN will depend on a combination of many factors, including the specific
sequences of tinputs, the activation functions, and the structure of the network, in
addition to the weight matrices. But considering the norms of the weight matrices
provides some insight into the challenges faced when training RNNs, namely the
problems of vanishing and exploding gradients.

The problem of vanishing gradients is not exclusive to recurrent neural networks
(RNNs) but also occurs in deep feedforward neural networks. However, RNNs are
typically deeper, which makes this issue more common in RNNs.

The vanishing or exploding gradients problem can hinder the effective capture of
long-range dependencies by simple RNNs. To mitigate this issue, more advanced

3The difference between necessary and sufficient conditions can be quite subtle. In mathematics,
a necessary condition must be true for the given statement to be true, but it is not enough on its own
to guarantee the statement is true. A sufficient condition, on the other hand, if true, guarantees the
statement is true.
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RNN architectures such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) were introduced. These architectures incorporate mechanisms that en-
able better control of information flow within the network, addressing the challenges
associated with vanishing or exploding gradients.

10.4 Long Short-Term Memory Networks

In practice, RNNs cannot capture long term dependencies due to the gradient ex-
ploding and vanishing problems [31]. LSTMs were introduced [32] to overcome the
gradient vanishing problems and they are an essential component for many appli-
cations.

Figure 10.4: The hidden state computation in an LSTM network.

An LSTM network (see Figure 10.5) has a memory cell and three gating units: the
input gate is used to control the amount of information to add to the current memory,
the forget gate is used to control the amount of information to remove from the
previous memory, and the output gate is used to control the amount of information
to output from the current memory. These gates take as input the previous hidden
state and the current input, and outputs a number between 0 and 1 (i.e. logistic
function). The flow of information into or out of the memory is controlled by the
multiplication of the output of these gates. The updates at each time step t are
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given by:

i = o(W;he_1 + Upx) 10.34

(10.34)
fi = o(Wrhi—1 4+ Urx¢) (10.35)
or = a(Wohi—1 4+ Upxy) (10.30)
¢; = tanh(Wche—1 + Ucxg) (10.37)
¢ =fO0c 1 +i:O¢ (10.38)
h; = o; © tanh(cy) (10.39)

where i; is the input gate, f; is the forget gate, o; is the output gate, ¢; is the
memory cell, and h; is the hidden state. © denotes element-wise multiplication.
W Ui, W Ur, WU W U, are weight matrices (parameters) of the LSTM network.
A variant of LSTM known as bidirectional BiLSTM [33] allows the integration of both
past and future information. It is a combination of two LSTMs in two directions: one
operates in the forward direction and the other operates in the backward direction.
Hence, each input word at time t is aware about the past and future contexts which
may improve the results.

Similar to LSTMs, Gated Recurrent Units (GRUs) were developed to handle long
term dependencies [34]. The gated recurrent units (GRUs) [35] which have the fol-
lowing forward updates:

7, = 0(W,h,_1 + U,x,) (10.40)
re = o(Wrhi_q + Upxy) (10.41)
|~1t = tanh(Wp(ht © r¢) + Upxy) (10.42)
hi =z Oh, 1+ (1—2z)0h; (10.43)

where z; is the update gate, r; is the reset gates. W, U,, W, U,, Wy U, are the
parameters of the GRU networks.
10.4.1 Vanishing/Exploding Gradients with LSTMs
The cell state in the LSTMs is given by
Ct = ft O Ci—1 + it @Et (1044)

To find the derivative a‘zc'1, we notice that ¢; is a function of f; (the forget gate),

i¢ (lnput gate) and ¢; (candidate input), and each of these being a function of ¢4
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(since they are all functions of hy_1). Using the multivariate chain rule we get:

d of, ol ~ Jc,
“ = g ©Ct—1 + ft + i + il

= - Ct ar
dce 1 dceq dct 1 dct 1

= 0'(Wrh¢_1 + Usx¢) - Wy - 0; 1 O tanh(ce1) - ¢r1
+ f;

+ 0’ (Wihi 1 + Uix¢) - W; - 0,1 O tanh(c;_1) - ¢

+ 0’ (Weh1 + Ucxe) - We - 0,1 O tanh(c;1) - i

(10.45)

Hence, the cell state gradient is an additive function of the four terms computed in
the above equation. During the backpropagation, it is possible for these additive
terms to have a value of T . Therefore, using LSTMs, the neural network is trained
to determine when the gradient should vanish and when it should be retained by
adjusting the values of the four terms.

The LSTM design is not always sufficient to prevent the issue of exploding gradi-
ents. Therefore, in successful applications of LSTM, an additional technique called
gradient clipping is often employed. Gradient clipping helps mitigate the problem
of exploding gradients by constraining the magnitude of the gradients during the
training process.

10.5 Independently Recurrent Neural Network

The Independently Recurrent Neural Network (IndRNN) [36] is a type of RNN de-
signed to address the issues of gradient vanishing and exploding that often occur
in traditional RNNs. The key idea behind IndRNN is to have separate recurrent
connections for each neuron, making the neurons operate independently across dif-
ferent time steps. This independence allows for better control over the gradient flow
during backpropagation, thereby mitigating the problems of gradient vanishing and
exploding.

For INdRNN, the hidden state h; for each neuron i at time step t is computed as:

hit = f(Wixe + uihi¢t—1 + by), (10.46)

where h;; is the hidden state of the i-th neuron at time step t, x; is the input at
time step t, W, is the input weight shared across all neurons, u; is the recurrent
weight for the i-th neuron, b; is the bias for the i-th neuron, and f is an activation
function, typically RelU.

To understand how IndRNN addresses gradient vanishing and exploding, let's derive
the gradient of the loss £ with respect to the hidden state h;;. Using the chain rule,
the gradient of the loss £ with respect to the hidden state h;; can be decomposed
as follows:
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oL oL 0dh;x
= L 10.47
(9/7[[[ Py 6/7% dhl-,t ( )
and the partial derivative g/,:i’l is:
k
6/7[- k ah[/‘
= = ’ (10.48)
(“)/7[1 j—t+1 6/7['1'_1
Given:
ohy;
i (W, + i o + b) (10.49)
6/7,"],1
Therefore, the overall gradient becomes:
T K
oL oL
= o |_| ul(Wax; + uihi 1 + by) (10.50)
' k=t+1 T =t

The key here is that the recurrent weight u; is a single scalar, making it easier to
control the gradient flow. The activation function f, typically chosen as RelU, helps
mitigate vanishing gradients because RelLU does not saturate like tanh or sigmoid
where f(x) = max(0, x), f'(x) = 1 for x > 0, preventing the gradient from vanishing.
Additionally, by having a recurrent weight u; that is scalar, it can be initialized and
constrained to values that prevent the gradients from diminishing too quickly. By
carefully constraining the recurrent weights v;, INdRNN can prevent the gradients
from growing exponentially. For example, setting u; to be within a specific range
(e.qg,, |ui] < 1 for stability) can maintain control over the gradient magnitude.

10.6 Bidirectional Recurrent Neural Networks

Bidirectional Recurrent Neural Networks (Bidirectional RNNs) are an extension
of the traditional RNNs that can capture information from both past and future
contexts by processing the sequence in both forward and backward directions. This
is particularly useful for tasks where the entire context of the input sequence is
important, such as in natural language processing and speech processing.

A Bidirectional RNN consists of two separate RNNs. A forward RNN that processes
the sequence from the beginning to the end and backward RNN that processes the
sequence from the end to the beginning.

Given an input sequence X = {x1,x2,...,x7}, where T is the length of the sequence,
the Bidirectional RNN computes two sets of hidden states. The forward hidden

— «—
states h; and the backward hidden states h:
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e The forward hidden states are computed as:
— —
he=f(xe hezq), (10.51)

where f is the RNN cell (e.g, LSTM or GRU) function applied to the input at
time step t and the previous forward hidden state h_1.

e The backward hidden states are computed as:
“— «—
he=1f(xe, hegr), (10.52)

where f is the RNN cell function applied to the input at time step t and the
«—
next backward hidden state h ¢41.

ﬁ
e The final hidden state h; for each time step t can be a combination of h; and
H
h t-

The combination of the forward and backward hidden states can be done in various
ways, commonly referred to as merge modes. Two typical merge modes are ‘sum’
and "concat”

e In the 'sum’ merge mode, the forward and backward hidden states are added
element-wise:
— «—
hy = hi+ hy, (10.53)

where this merge mode results in a hidden state with the same dimensionality
as each of the forward and backward hidden states.

e In the "concat’ merge mode, the forward and backward hidden states are con-
catenated along the feature dimension:

—
ht, ht

hy = concat( ), (10.54)

where this merge mode results in a hidden state with double the dimension-
ality of each of the forward and backward hidden states.

Bidirectional RNNs are particularly powerful for tasks that require understanding
context from both directions in a sequence. By using bidirectional processing, these
models can achieve a more comprehensive understanding of the input sequence,
leading to improved performance on various tasks.
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Figure 10.5:  Sine wave prediction using RNN model. The curve with the orange
color is the predicted one.

10.7 An Example

A Python code is provided to illustrate the learning algorithm of a regression problem
based on the simple RNN model (Elman’s network).

import numpy as np
5 import matplotlib.pyplot as plt

» # Define the sine wave sequence

o def generate_sequence (length):

7 freq = 0.1 # Frequency of the sine wave
8 x = np.arange (0, length)

9 y np.sin(freq * x)

10 return y

12 # Define the ElmanRNN class
13 class ElmanRNN:

1 def __init__(self, input_size, hidden_size, output_size):
15 self .input_size = input_size

16 self .hidden_size = hidden_size

17 self .output_size = output_size

18

19 # Initialize the weights

20 self .W_xh = np.random.randn(hidden_size, input_size)
21 self .W_hh = np.random.randn(hidden_size, hidden_size)
22 self .W_hy = np.random.randn(output_size, hidden_size)

# Initialize the biases
25 self .b_h = np.zeros((hidden_size, ))
6 self.b_y = np.zeros((output_size, ))
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def forward(self, x):
T = x.shape[0]
self .h = np.zeros((T + 1, self.hidden_size))
self.y = np.zeros ((T, self.output_size))

for t in range(T):
self .h[t + 1] = np.tanh(np.dot(self.W_xh, x[t]) + np.dot
(self.W_hh, self.h[t]) + self.b_h)
self.y[t] = np.dot(self.W_hy, self.h[t + 1]) + self.b_y

return self.y

def backward(self, x, y, learning_rate):
T = x.shape[0]
dL_dW_xh = np.zeros_like(self.W_xh)
dL_dW_hh np.zeros_like (self.W_hh)
dL_dW_hy np.zeros_like (self.W_hy)
dL_db_h = np.zeros_like(self.b_h)
dL_db_y np.zeros_like (self.b_y)
dh_next np.zeros_like (self.h[0])

for t in reversed(range(T)):
dL_dy = 2 * (self.y[t] - y[t])
dL_dW_hy += np.dot(dL_dy.T, self.h[t+1].reshape(-1, 1).T

dL_db_y += dL_dy

dh = np.dot(self.W_hy.T, dL_dy.T) + dh_next.reshape(-1,
1)

dh_raw = (1 - self.h[t+1] **x 2) x dh[O0]

dL_db_h += dh_raw

dL_dW_hh += np.dot(dh_raw.reshape(-1, 1), self.h[t].
reshape (1, -1))

dL_dW_xh += np.dot(dh_raw.reshape(-1, 1), x[t].reshape
1, -1))

dh_next = np.dot(self.W_hh.T, dh_raw.reshape(-1, 1))

# Update weights and biases

self .W_xh -= learning_rate * dL_dW_xh
self .W_hh -= learning_rate * dL_dW_hh
self .W_hy -= learning_rate * dL_dW_hy
self .b_h -= learning_rate * dL_db_h
self .b_y -= learning_rate * dL_db_y

def train(self, x, y, learning_rate, num_epochs):
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for epoch in range (num_epochs):
y_pred = self.forward(x)
self.backward(x, y, learning_rate)

if (epoch + 1) % 100 == O0:

loss = np.mean((y_pred - y) ** 2)
print (f’Epoch: {epoch+1}/{num_epochs}, Loss: {loss}’

# Define the sequence length and generate the sine wave sequence

> sequence_length = 100
; sequence = generate_sequence (sequence_length)

# Prepare the training data
train_data = sequence[:-1]
train_target = sequence[1:]

# Reshape the training data for input to the Elman RNN
train_data = train_data.reshape(sequence_length-1, 1)
train_target = train_target.reshape(sequence_length-1, 1)

# Define hyperparameters
input_size = 1

hidden_size 16
output_size = 1
learning_rate = 0.001
num_epochs = 10000

# Initialize the Elman RNN model
model = ElmanRNN (input_size, hidden_size, output_size)

3 # Train the model
1+ model.train(train_data, train_target, learning_rate, num_epochs)

# Generate predictions for the sequence
predictions = model.forward(train_data)

# Plot the original sine wave and the predicted sine wave

plt.figure(figsize=(12, 6))

plt.plot(sequence[:-1], label=’0Original Sine Wave’) # Original sine
wave

plt.plot (predictions, label=’Predicted Sine Wave’) # Predicted sine
wave

plt.xlabel (’Time’) # X-axis label

plt.ylabel (’Amplitude’) # Y-axis label

#plt.title(’0Original vs Predicted Sine Wave’) # Title of the plot

#plt.legend() # Display legend

#plt.show() # Display the plot
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118 plt.savefig(’rnn_sine.png’, dpi=600)

Listing 10.1: Python example for sine wave prediction problem.

10.8 Assignments

Implement a neural langauge modeling algorithm using the RNN model using the
Keras deep learning library and Google colab. To load the dataset, please visit
https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/
input.txt.


https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt
https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt




Attention is all you need.

— Ashish Vaswani and colleagues

Recurrent Neural Networks (RNNs) operate sequentially, which makes them slow
for both training and inference. In this chapter, we introduce self-attention networks
as a replacement for RNN layers. One application of self-attention networks in the
sequence-to-sequence Transformer model is in machine translation. In this context,
the self-attention mechanism allows the model to learn the relationships between
words in a sentence, regardless of their positions. This means that the model can
capture long-range dependencies between words, which is crucial for accurately
translating sentences from one language to another. For example, in translating
an English sentence to French, the self-attention network helps the Transformer
model to identify which words in the English sentence are most relevant to the
words being generated in the French translation, resulting in more accurate and
contextually appropriate translations. The Transformer model is built on a complex
architecture. We will start by introducing the fundamental components (iLe. the
scaled dot-product, self-attention networks, and masked self-attention networks)
required to construct the Transformer model, and then proceed to provide a detailed
explanation of the model itself.

11.1  Scaled Dot-Product Similarity Measure

One way to measure the similarity between two vectors is to compute the dot-
product between them. Consider the dot-product q - k of two vectors q and k each

of dimension dg:
C/k

q-k=> qik (11.1)
i=1
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Assume the following query and input vectors in a 3-dimensional space:

q=1[0.8,0.3,0.5]

ki1 =10.9,0.1,04], k;=1[04,0.7,05, k3=1[0.7,0.2,0.6]
Let us compute the dot-product similarity between the q and the three vectors

ki, ko, ki:

q - ki = (0.8)(0.9) + (0.3)(0.1) + (0.5)(0.4) = 0.72 + 0.03 + 0.2 = 0.95
q - ko = (0.8)(0.4) + (0.3)(0.7) + (0.5)(0.5) = 0.32 + 0.21 + 0.25 = 0.78

q - ks = (0.8)(0.7) + (0.3)(0.2) + (0.5)(0.6) = 0.56 + 0.06 + 0.3 = 0.92

We can rank the input vectors based on their similarity scores with q: k1 > k3 > k>
Thus, vector 1 is the most relevant, followed by vector 3 and vector 2.

As the scores tend to increase with the dimensionality of the query vector, the scaled
dot-product is often used to normalize this effect:

a-k _ Y qk
vV dk vV C/k

If g; and k; are independently drawn from a distribution with zero mean and variance
o2, then: Since the mean of each q; and k; is zero:

(11.2)

Elg=0, Ek]=0
The expectation of the dot-product is:

di

di
Elq-k|=E [Z C/[kz] = ZE[q[/q]
i=1

i=1
Since g; and k; are independent:
Elgiki] = Elqi]Ek] = 0
Therefore:
Elq-k]=0

To compute the variance of the dot-product, we consider the variance of each term
C/[/([Z
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Var(q:ki) = El(qiki)’] — (E[qik:)?
Since E[g;k;] = 0, we have:
Var(giki) = E[g?JE[k?] = 0?0 = o

For the sum of dy independent products g;k;, the variance is the sum of the variances
of each product:

di
Var(q - k) = ) Var(gqik;) = dio”
i=1

The standard deviation of the dot-product grows with \/d. Without scaling, the
variance increases linearly with dy, leading to instability. Scaling by v/dy normal-
izes the variance to:

Var ( q k ) _ dyo? o4

V dk d/<
Hence, this normalization keeps the variance of the dot-product scores consistent,
independent of the dimension dj.

11.2 Multi-head Self-Attention Networks

Self-Attention Networks (SANs) form the foundation of Transformer models [37].
These networks are designed to learn contextual relationships between input vec-
tors and can effectively capture long-term dependencies, replacing the recurrent
connections used in Recurrent Neural Networks (RNNs). Additionally, SANs are
significantly faster than RNNs because they operate in parallel.

Consider an input matrix and a query vector: SANs calculate a similarity score
between the query vector and parts of the input matrix, giving more attention to
similar parts. This score is then used to transform the input matrix into an output
vector. The output vector is a weighted sum (or average) of the input matrix, resulting
in a richer representation than the original input.

Mathematically, the Self-Attention process involves the following steps in matrix
form:

1. Calculate Query, Key, and Value vectors: For an input sequence X & R”*%model
(where n is the sequence length and dyedel is the dimension of each input
vector), we linearly transform the input using weight matrices W9 & R%moset k|
WK & Rmotexdk  and WY & Rmoderxdv,

0=XWY (nxdy), K=XWK (nxd), V=xW"Y (nxd)
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2. Compute the attention scores: The attention score between two tokens is
the dot-product of their Query and Key vectors. We compute a score matrix
A E RHX”.

A= 0K (nxd)x(dexn)=(nxn)

3. Scale the attention scores: To ensure stable gradients, the scores are scaled
by the square root of the dimension of the key vectors, dy as discussed in the
previous section:

T
A 0K
dk

(n x n)

4. Apply the softmax function: To get the attention weights, we apply the softmax
function to the scaled scores. Then, we compute the attention output:

T

Z = Attention(Q, K, V) = softmax (QK

\/CT/() Vi (nxn)x(nxd)=(nxd)

(11.3)

Figure 11.1 illustrates the process of computing the attention mechanism for the
input query xz. It demonstrates how x; interacts with other inputs in the sequence
to generate attention scores. These scores are used to weigh the value vectors,
resulting in the output for z;. Ultimately, the attention mechanism captures relevant
information from other inputs to produce a context-aware representation of x,. The
attention score ¢; for each time step is computed as:

exp(qs ki)

— L
> exp(d; k;)

where ¢2: Query vector for the input x; and k;: Key vector at time step .
The output is a weighted combination of value vectors v;:

=) v
i

where v; is the value vector associated with the key k;.

Qi =
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| Softmax |

T,
qQy k
;?1 alk, alk,
Tk Vi, V.
q1 k; Vi iqz ko V2 qn k, Van
W, W, W, 1 W, W, W, H W, W, W,
X1 X Xn

Input query
|

Figure 11.1: For the input query xp, self-attention generates an output vector z;.
This vector z; has a dimensionality of d,, which corresponds to the size of the value
vectors in the self-attention mechanism. The attention process computes a weighted
sum of the value vectors, using attention scores based on the similarity between x;
and other inputs. Ultimately, z; represents the contextualized embedding for x; after
the attention mechanism.

It is possible to improve the self-attention performance by running i self-attention
blocks (i.e. multi-head attention) in parallel. This means that the key, query, and
value matrices are split into a number of heads and projected. The individual splits
are then passed into a self-attention block as described above. The Multi-Head
Self-Attention process involves the following steps in matrix form:

1. Split the input: For each head, we linearly transform the input X into Q;, K,
and V; using different weight matrices W[Q € Rémoserxdic WK & RImodel ¥k and
W,V [ Rdmodelxdv-

f :

Qi =XW? (nxdy), K=XWK (nxd), Vi=xXW' (nxd)

2. Compute the attention: For each head, compute the attention output:
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head; = Attention(Q;, Ki, Vi) (n x d,)

3. Concatenate the head: Concatenate the attention outputs from all heads. If
there are h heads and each head has an output dimension of d,, the concate-
nated output has dimension n x (h - d,):

MultiHead(Q, K, V) = Concat(heads, heads, ..., heady) (n x (h-d,))

4. Final linear transformation: Apply a final linear transformation to the con-
catenated output using weight matrix W0 & R(dv)xdmodel.

MultiHead(Q, K, V) = Concat(heady, heady, . . ., heaclh)WO, (11.4)

where the final matrix shapeis  (nx(h-d,)) x((h-dy) X dmodel) = (N X dmodel)

Figure 11.2 demonstrates the process of implementing multihead self-attention. It
shows multiple self-attention mechanisms operating in parallel. Each attention head
processes the input independently and the outputs are later combined. This ap-
proach helps the model capture different aspects of the input sequence.
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T

Linear

T

Concat

Y
A

A

Scaled dot-product Scaled dot-product Scaled dot-product
attention attention attention

Q K, Vi Q: K> Vs Qn K Vi
w) Wi | W w wi | w2 wh who| wh
X

Figure 11.2: Multihead self-attention operates by utilizing multiple self-attention
mechanisms, with h attention heads working concurrently. Each attention head
independently processes the input, capturing different aspects of the sequence rela-
tionships. These results are then combined and transformed through a linear layer
to create the final output. This parallel processing allows the model to focus on di-
verse features of the input simultaneously, enhancing its ability to capture complex
dependencies.

11.2.1  Numerical Example for Self-Attention

Consider a simple example with a sequence of 2 inputs where the dimension of each
input is 2. Here, dmodel = dx = dg = d, = 2.

1. Input sequence X:

X=B ﬂ (2 x 2)

2. Weight matrices We WK and WV-

WQ—WK—WV—B ﬂ (2 % 2)

3. Calculate O, K, and V:
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Q=XWP = 2) 1| @x2)
K =XWk = g? (2 x2)
V=XxWw" = 2)? (2% 2)

4. Compute the attention scores A:

o[- e

5. Scale the attention scores:

_OK” 11 0] [0707 0 W A
=/ ~Alo 17| o oz ©*?

6. Apply the softmax function:

e
070710 G007 g0

o o ]_ [0.669 0.33

0.707 0 0.707 0
softmax(A) = [“5’ gte e @070#’

7. Calculate the final attention output:

0.33 0.669

Attention(Q, K, V) = softmax(A)V = [ 0 1

0.33 0‘669] (22)
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0.669 033 (1 0] 10669 033
1033 0.669

] (2x2)

This example illustrates how self-attention works with simple values. In prac-

tice, the dimensions and values would be larger and more complex.

11.2.2 Masked Self-Attention

Masked self-attention is a variant of the self-attention mechanism used primarily
in the decoder part of the Transformer model [37]. It ensures that the prediction for
a particular position in the sequence does not depend on future positions. This is
crucial for autoregressive tasks like language modeling, where the model generates
tokens one by one. Masked self-attention is also referred to as causal attention
because it ensures that the attention mechanism respects the causal structure of
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the sequence (Le, the prediction at a given time step depends only on the previous
time steps).
In masked self-attention, future tokens are masked out. This means that when
computing the attention for a token at position t, the model only attends to tokens
at positions < t. The masked Self-Attention process involves the following steps in
matrix form:

1. Compute Queries, Keys, and Values:

0=XW? K=xwk v=xw"

2. Compute Raw Attention Scores:

KT
A= Ok
V d
3. Apply the Mask: A mask matrix M is created, where M;; = —co if j > i and
M;; = 0 otherwise. The raw attention scores are then adjusted using this

mask:

Amasked =A+M

This operation effectively nullifies the influence of future tokens by setting
their corresponding scores to —oo.

4. Apply the Softmax Function:

Attention(Q, K, V) = softmax(Amnasked) V' (11.5)

Consider an input sequence X = [x1, x2, x3] with corresponding query, key, and value
matrices Q, K, and V. We can compute the raw attention scores A as follows:

Q/<T ayy aiz a3
A= G 9w a2
a3 a3 433

Then we build the mask matrix M:

0 —oo —o00
M=10 0 —co
0O 0 0

and compute the masked attention scores:

ayn —oo —0Q
Amasked = A+ M= ay axn —o0
a3y a4z ass
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then the softmax is applied:
Attention(Q, K, V) = softmax(Amasked)V

This ensures that when computing the attention for the first token, only the first
token is considered; for the second token, only the first and second tokens are
considered: and so on.

Masked self-attention is crucial for tasks where the model needs to generate se-
quences in an autoregressive manner, ensuring that the prediction for each token
depends only on the previous tokens and not on future tokens. This mechanism is
fundamental in the decoder of the Transformer model, enabling it to handle sequence
generation effectively.

11.3 Stacking Self-Attention Layers

Stacking self-attention layers without non-linear transformations or feed-forward
networks between them results in a single linear transformation. This equivalence
follows from the associative property of matrix multiplication and the linearity of the
self-attention mechanism. Let me provide a clearer mathematical derivation to show
how multiple stacked self-attention layers without feed-forward networks (FNN)
can be equivalent to a single self-attention layer.

A self-attention layer computes the output Z from an input matrix X € R"*% using
the

Consider two self-attention layers stacked on top of each other. The output of the
first layer is:

Zy = Attention(Qy, Ky, V4) = softma ( O K, ) %
ention(Q, K, softmax
1 1, K1, V1 T 1

where:
01 =XW2, K= XWK, vy =xw)

Substituting these:

(X WP)(X W1K)T

vV
VR (XWr7)

/4 = softmax (

= AXW,

The input to the second layer is /1, and its output is:
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K!
/> = Attention(Q>, K3, V) = softmax ( K, ) V)
Vd

where:

Q=2ZIW2, K=2WE, Vo=
Substituting £ from the first layer:
Q
Q) = AXWY W,
Similarly:

Ky = AXW,Y WA

Vo = AXWY WY
This is equivalent to a single self-attention layer with combined weights:
WQ _ W1V WZQr WK _ W1V WZKr W\/ _ W1V WZ‘/

Now, let's show how this can be reduced to a single self-attention layer. By com-
bining the two layers into one, we observe that:

AXWY WEYAX WY WY
7> = Softmax AXW, ZJ(CT 1 ) AXWY WY (11.6)
k
Q KN\T
= Softmax ((AXW )(C\XW ) )AXWV (11.7)
443

Therefore, the stacked self-attention layers can be seen as a single self-attention
layer with weights that are the product of the individual layers’ weights. Adding
non-linearity through the use of feed-forward networks (FFN) enables stacking
multiple self-attention layers.

Self-Attention Networks Complexity

The complexity of self-attention networks per layer is O(n’d) where n is the input
sequence length and d is the embedding dimension. The self-attention networks
compute the attention weights for each token with respect to every other token.
Hence, it is O(n) operations for each token and therefore O(n?) for all the tokens.
Moreover, the complexity of the number of sequential steps is O(1) where all n
operations run in a single step (i.e. all the n tokens are processed in parallel).
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On the other hand, the complexity per layer is O(nd?) for RNNs where the previous
step’s hidden states with the weight matrix multiplication run in d” operations (i.e.
O(nd?) for n steps). In addition, the complexity of the number of sequential steps is
O(n) where all n operations run in n steps.

The self-attention mechanism has a complexity of O(n?) for all input tokens, which
creates challenges in modeling long-term dependencies in Transformer models. As
a result, there is a limitation on the context window size in models like BERT [17]
and GPT [38]

’)

11.3.1 Position-wise Feed-Forward Network (FFN)

Stacking self-attention layers without non-linear transformations or feed-forward
networks between them results in a single linear transformation. This equivalence
follows from the associative property of matrix multiplication and the linearity of the
self-attention mechanism.

The Feed-Forward Network (FFN) in Transformers is an essential component within
each self-attention block of the model. Each self-attention block of the Transformer
architecture consists of a multi-head self-attention mechanism followed by a feed-
forward network applied to each position independently. This feed-forward network
is responsible for further transforming the input features.

The FFN consists of two linear transformations with a RelLU activation function in
between. Given an input vector x, the FFN operation can be summarized as:

y = W, ReLU(W;x + bq) + by, (11.8)

where x is the input vector of shape (dmodel)) W1 is the first weight matrix of shape
(dmodel. dg), by is the first bias vector of shape (dg), W5 is the second weight matrix
of shape (di, dmodel), b2 is the second bias vector of shape (dmodel) and y is the
output vector of shape (dmodel). The RelLU(x) = max(0, x) activation function is used
for the non-linear transformation. The FFN acts on the output of the attention
mechanism, which is in dyodel: By expanding to dy, the network can process and
refine information more thoroughly before reducing it back to diodel - Figure 113
illustrates the position-wise FFN implementation.

The term "position-wise Feed-Forward Network (FFN)" is used because the FFN
is applied independently to each position in the input sequence. This means that
the same FFN is used for every position in the sequence, processing each position’s
features without considering information from other positions. Equation (11.8) allows
the model to learn complex transformations of the input features, enhancing its
capability to capture intricate patterns in the data.

Typically, di = 4dmodel
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[\
N

X € Rdmodel

y € R

Figure 11.3: The position-wise FFN is implemented by mapping the input vector
€ Rl to a higher-dimensional space € R%, applying a non-linear activation
function, and then projecting it back to a vector € Rmodet

11.4 The Transformer Model

The Transformer model [37], revolutionized the field of natural language processing
(NLP) by relying entirely on self-attention mechanisms and dispensing with re-
current and convolutional layers. To grasp the Transformer model, it's essential to
tackle sequential modeling tasks like language modeling. We'll start by introducing
language modeling and then explore the encoder-decoder architecture, including
the Transformer.

11.4.1 N-gram Language Modeling

An n-gram language model is a probabilistic model used for predicting the next
word in a sequence based on the previous n — 1 words. An n-gram is simply a
contiguous sequence of n words from a given text or speech. The model calculates
the probability of a word sequence based on these n-grams.

A bigram language model uses a context of one word to predict the next word. For
a sequence of words wq, wy, ..., wpy, the probability of the sequence according to
the bigram model is given by:



11.4. THE TRANSFORMER MODEL 145

m

Plwi, wa, ..., wy) = P(w) |_| P(w; | wi—1), (11.9)
=2

where P(w; | wi_1) is the probability of word w; occurring given the previous word

Wi_1.
Consider a simple corpus with the following sentences:

1. 'l like pizza'
2. "l like pasta’
3. 'l eat pizza'

We can compute the bigram probabilities using counts:

Count('l like") 2

P(like | ) = ————1 ==
(itke |1 Count('l") 3
Count('l eat’) 1
Pleat|l) = —————— = —
(eat 1) Count('l") 3
. : Count('like pizza") 1
Plpizza | like) = Count('like") "2

Given the sentence 'l like pizza', the probability can be computed as:

P('l like pizza") = P(l) - P(like | 1) - P(pizza | like)
The probability of a unigram like " is:

Count(l)
N
where Count(l) is the number of times the word 'I" appears in the corpus and N is

the total number of words in the corpus.
If P(l) is 3, then:

P()

T2 1 1

P(l like pizza') = = - = - = = =

(Ilike plzza) =335 =3
A trigram language model uses a context of two words to predict the next word. For
a sequence of words wq, wy, .. ., Wy, the probability of the sequence according to

the trigram model is given by:

m

P(wi, wa, ..., wp) = P(wq)P(wz | wy) |_| P(w; | wi—2, wi—1), (11.10)
i=3
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where P(w; | wi—2, wi_1) is the probability of word w; occurring given the two
preceding words w;_> and w;_1.
Consider the same corpus:

1. 'l'like pizza’
2. 'l like pasta’

3. 'l eat pizza’

We can compute the trigram probabilities:

_ _ Count('l like pizza") 1
Plpizza | | like) = Count("l like") "2
1

Count('l like pasta’)
Count('l like") 2

Given the sentence 'l like pizza', the probability can be computed as:

P(pasta | | like) =

P('l like pizza") = P(l) - P(like | 1) - P(pizza | | like)

Using the previous example:

17 2 1 1
Pl W zzaY\ == = == =
('l like pizza") 33579
For an n-gram language model, the general formula for a sequence wy, wa, ..., wpy,
is:
Plwi, wo, ... wy) = P(wq) - P(w, | wi) - Plwgy ‘ Win—nt1, - W) (11.11)

This approach is used to approximate the probability of sequences in natural lan-
guage processing tasks.

Smoothing in N-gram Language Models

In n-gram language models, smoothing is a technique used to handle the problem
of zero probabilities for unseen n-grams. When building a language model, we
often encounter n-grams that do not appear in the training data, resulting in a zero
probability for those n-grams. This can be problematic, especially for sequences
that are rare or entirely absent in the training corpus.

Smoothing adjusts the estimated probabilities to account for these unseen events,
ensuring that no n-gram has a zero probability.
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Laplace smoothing, also known as "add-one smoothing’, is a simple technique that
adds a small amount (usually 1) to each count to prevent zero probabilities. For a
bigram language model, suppose we want to estimate the probability P(w; | w;_1),
where w; is the current word and w;_1 is the preceding word.

Without smoothing, the maximum likelihood estimate (MLE) of the bigram probability
is:

Count(w;_1, w;)

Plw: | wi 1) —
(wi | wiza) Count(w;_1)

’

where:

e Count(w;_1, w;) is the number of times the bigram (w;_1, w;) appears in the
tratning data.

e Count(w;_1) is the number of times the word w;_1 appears in the training data.

Laplace smoothing modifies this estimate by adding 1 to all bigram counts and
adjusting the denominator accordingly:

Count(wi—1, w;) + 1
Count(w;_1) + V

PLaplace(Wi | Wi-1) =

where V' is the size of the vocabulary (total number of unique words in the training
data). This modification ensures that every bigram has a non-zero probability, even
if it did not appear in the training data.

Consider a small corpus:

1. 'l like pizza'
2. 'l like pasta’

3. 'l eat pizza'

Assume our vocabulary V = {l, like, eat, pizza, pasta}, so V = 5. Let's compute the
probability P(pizza | like) with Laplace smoothing:

Count(like, pizza) +1  1+1 2
Count(like) + V 2+5 7
Without smoothing, if we had an unseen bigram, its probability would be zero, which

Laplace smoothing avoids.
Given an n-gram model, the general formula for Laplace smoothing is :

PLaplace(Pizza | like) =

B Count(Wi—p41, ..., wy) + 1
Count(Wi—pny1, ..., wi—q)+ V'

PLaplace(W[ ‘ Wi—n4+1,- -+, Wi71) (11.12)
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where Count(Wi_p+1, ..., w;) is the count of the n-gram, Count(w;_p+1, ..., wi_1) is
the count of the (n-1)-gram preceding w;, and V' is the size of the vocabulary.
While Laplace smoothing is straightforward, it is not always the most effective
method because it adds the same amount (1) to all counts, regardless of their fre-
quency. This approach can overly penalize more frequent n-grams, leading to less
accurate probability estimates. Other smoothing techniques, such as Good-Turing
smoothing [39] or Kneser-Ney smoothing [40, 41], are often preferred in practice.

11.4.2 Neural Language Modeling

A 'neural language model" uses neural networks to predict the probability of a
sequence of words in a sentence. Unlike traditional n-gram models, neural language
models can handle larger contexts and capture more complex patterns in the data by
using word embeddings and neural networks to represent and learn relationships
between words.

Given a sequence of words wq, wa, ..., wy_1, the goal is to predict the next word
w, using a neural network. The probability of a sequence of words wq, wa, ..., w,
is defined as:

P(wi, wa, ..., wy) = P(wy)-P(wa | wq)-P(ws | wi, wa)-. .- P(wy | wy, wa, .o, wy—q)

(11.13)
A neural language model aims to compute each conditional probability P(w; |
W1, W2, ..., Wi_1) using a neural network.

A Feed-Forward Language Model

The most common architecture for a neural language model is a feedforward neural
network or a recurrent neural network (RNN). Let's describe a simple feedforward
neural language model:

1. Word Embedding Layer: Convert each word into a fixed-size vector represen-
tation (embedding) using an embedding matrix. Suppose we have a vocabu-
lary of size V and each word is represented by an embedding of size d. The
embedding matrix E is of size V x d.

For a context window of size 3, given words wy, ws, w3, we first obtain their
embeddings:

where e; € R
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2. Hidden Layer: Use a neural network layer with non-linear activation (e.g.,
RelU or sigmoid) to process the concatenated embeddings. We start by con-
catenating the embeddings to form a single input vector:

X = [61;62; 63] S R3d

Apply a hidden layer transformation:

h = tanh(Wpx + bp)

where Wy, € R34 is the weight matrix for the hidden layer, by € R™ is the
bias vector, and h € R" is the hidden layer output.

3. Output Layer: Apply a softmax function to compute the probability distribution
over the vocabulary for the next word. Compute the scores for each word in
the vocabulary:

z=W,h+ b,,

where W, € RY*" is the output weight matrix, b, € R" is the output bias
vector, and z € RY are the scores for each word in the vocabulary.

Apply the softmax function to get the probability distribution over the vocab-
ulary:

exp(z;)

>y exp(z))

where z; is the score corresponding to the word w;.

P(Wn+1 | W1,W2,~~,Wn) =

Let's walk through a numerical example with a simple neural language model. The
vocabulary size V =5 (words: wq, wa, w3, ws, ws), embedding dimension d = 2, and
hidden layer size m = 3.

Let the embedding matrix £ be:

0.1 03
04 0.2
E=105 038
0.6 09
0.7 01

For the input context (w2, w3, wy), the embeddings are:
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e = E[wy]=[04,02], ey=Ews3]=1[050.8], e3=FE[ws=10.60.09]

Concatenate the embeddings:

x = [e1;ey e3]=[0.4,0.2,0.5,0.8,0.6,0.9]

Suppose the weight matrix Wy, and bias vector by, are:

01 02 03 04 05 06
W,= (07 08 09 01 02 03|, b,=1[01,0203]
04 05 06 07 08 09

Compute the hidden layer output:

h = tanh(Wpx + by)

Plugging in the values:

(07-04+08-02409-05+0.1-08+0.2-06+0.3-0.9) 0.2

(01-04+4+02-02+03-054+04-08+4+05-0.6+0.6-0.9) 0.1
th = +
(04-044+05-02+06-054+07-08+08-006+09-0.9) 03

Calculate:

1.49
Wyx = [1.56] . h = tanh([1.49,1.56,2.71]) ~[0.90,0.91, 0.9
2.71

Assume:

01 02 03
04 05 06
W, = (07 08 09|, b,=[0.1,0.1,0.1,0.1,0.1]
10 11 12
13 14 15

Compute the output scores:

z=W,h + b, ~[0.669, 1.509, 2.349, 3.189, 4.029]

Apply the softmax function:

exp(z;)

>y exp(z))

P(w; | wa, w3, wy) =
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For example:

exp(0.669)

~ 0.020
exp(0.669) + exp(1.509) + exp(2.349) + exp(3.189) + exp(4.029)

P(wi) =

This is a simplified example to illustrate the mechanics of neural language modeling.
The key advantage is that neural models, especially those with recurrent or self-
attention mechanisms, can capture longer-range dependencies in text compared to
traditional n-gram models.

An RNN Language Model

RNNs are particularly useful for modeling sequential data because they maintain
a hidden state that captures information about the past inputs. Hence, they are
commonly used for language modeling.

An "RNN language model" uses the hidden state of the network to predict the next
word in a sequence. Given a sequence of words wy, wa, ..., wp, the RNN computes
the probability of each word given the previous words:

n
Pwi, wa, . wy) =[] Pwi | wi,wa, . wisq)
i=1

The hidden state at each step t is updated based on the current input word and the
previous hidden state:

he = f(Wh - x¢ + U - he—1 + bp),

where h; € R” is the hidden state at time step t, x; € R is the embedding of
the tnput word wy, Wy, € R™*9 is the weight matrix for the input, U, € R™" is
the weight matrix for the hidden state, by, € R™ is the bias vector, and f(:) is a
non-linear activation function (e.g., tanh).

The output layer computes the probability of the next word:

OtZ\/-ht"f‘bO

P(Weg1 | wi, wa, ..., w¢) = softmax(o¢)

where V € RY*" is the weight matrix for the output layer, and b, € R" is the bias
vector for the output layer.
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Masked Self-Attention Language Model

A "Masked Self-Attention Based Language Model" predicts the next word in a se-
quence by leveraging self-attention mechanisms that are restricted to focus only on
the preceding words in the sequence. This approach ensures that the model does
not have access to "future’ words when predicting the next word, which is crucial for
causal (auto-regressive) language modeling. The key steps and equations for this
process are described below:

Given an input sequence of words [wq, wa, .. ., W], the first step is to convert these
words into their corresponding embeddings. Let:

X=[x1,x2,..., %] € R"*d

where x; € RY is the embedding of word w; and d is the dimensionality of the
embedding.

For each word w;, we compute the masked self-attention score by masking the
future words (i.e, setting the attention weights for future words to zero). Let Q, K,
and V represent the Query, Key, and Value matrices:

0=xW° K=xwk, v=xwV

where WO, WK, WY € R are learnable weight matrices and dy is the dimen-
sionality of the Key/Query space. The attention scores are computed using the
scaled dot-product:

KT
Attention(Q, K, V) = Softmax (Q

V C//<
where M € R™*T is a masking matrix such that Mij = —oo if j > i (to prevent
attending to future words), and M;; = 0 otherwise. Please note that the Softmax is
applied row-wise.

The attention weights are computed as:

#m) v

T

A = Softmax (QK

m*M)

So the masked self-attention output £ is:

T

K
Z = AV = Softmax Q
vV C/k
The output Z of the self-attention layer is then used to predict the next word. For
next-word prediction, a linear layer followed by a softmax function is used. Let
Wour € RY*Y be the output weight matrix where V is the vocabulary size. The final

m) v
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softmax layer gives the probability of each word in the vocabulary being the next
word in the sequence:

exp(Z Waut)
ZJ\'/:1 exp(Z Wout)

P(v) =

This is a basic application of masked self-attention for language modeling. In the
following section, we will explore the Transformer model, which is designed for
sequence-to-sequence tasks. The Transformer consists of an encoder and a decoder
and serves as an example of conditional language modeling.

11.4.3 Conditional Language Modeling

Conditional language modeling involves predicting the next word in a sequence
given both the previous context and an additional condition, such as another se-
quence. Mathematically, this can be represented as finding the probability of a
target sequence Y = (y1,y2, ..., Yn) given a source sequence X = (x1,X2, ..., Xp).
The objective is to maximize the conditional probability:

PY [ X)=Plyr,y2, - yn | x1,%2, ..., Xin)

Using the chain rule, this can be decomposed as:

n
PYIX) =] Pt [y yz, - ye1,X)
t=1

Here, each word y; in the target sequence Y is predicted based on both the pre-
ceding words in Y and the entire source sequence X.

An elementary encoder-decoder model [42] utilizes an RNN to encode the input
sequence into a hidden representation. The final hidden state of the encoder is
then passed to the decoder as its initial state. The decoder, which is also an RNN,
generates the output sequence step by step. Each output is conditioned on the
previous output and the last hidden state from the encoder. This structure allows
the decoder to leverage both the encoded input and prior generated tokens. The
encoder-decoder pair works together to produce the final output sequence as shown
in Figure 11.4.

When the input sequence is particularly long, the encoder must compress all the
information into a single vector, which increases the likelihood of losing important
details. As the encoder tries to capture everything in one vector, it can struggle
to retain the full context of the sequence. This often leads to the model forgetting
critical information from earlier in the input. This issue is especially prominent
in RNN-based encoder-decoder models. The bottleneck of relying on one hidden
state to store all information results in degraded performance on longer sequences.
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Addressing this limitation is crucial for improving the model's accuracy on complex,
lengthy inputs.

A solution to the issue of forgetting in encoder-decoder models is to introduce a
cross-attention layer between the encoder and decoder. This allows the decoder to
focus on specific tokens from the source sequence that are most important for each
step of the output. At every generation step, the decoder can attend to different
parts of the input sequence, ensuring it captures relevant information. By examining
the attention weights, we can see which tokens the decoder emphasizes during its
decision-making process. This mechanism helps the decoder leverage important
source tokens dynamically. Overall, cross-attention improves the model's ability to
handle longer and more complex sequences. We will explore cross-attention in more
detail when discussing the Transformer model, where it plays a key role in allowing
the decoder to attend to the encoder’s output more effectively at each generation
step.

Figure 11.4: An elementary encoder-decoder model uses an RNN to transform the
input sequence into a hidden representation. The encoder’s final hidden state is
transferred to the decoder as its starting point. The decoder, also an RNN, generates
the output sequence in a step-by-step manner, with each output relying on the
previous one and the encoder’s last hidden state. This setup enables the decoder
to incorporate both the encoded input and previously generated outputs to produce
the final sequence.

The Transformer model is an example of a conditional language model that uses
self-attention mechanisms to capture dependencies in both the source sequence X
and the target sequence Y. The Transformer consists of two main parts: an encoder
and a decoder.

The encoder processes the source sequence X and outputs a sequence of context-
aware representations. Let's denote the encoder’s input embeddings as EX =
(eﬁ(, ef, _..,e%). The encoder applies multiple layers of self-attention and feed-
forward networks to transform these embeddings into hidden states:
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H* = Encoder(E")

where HX = (/ﬁ(, hf, ..., hY) are the context-aware representations of the input
sequence.

The decoder generates the target sequence Y by predicting each word y; based on
its own previous words and the encoded representations from the source sequence.
The decoder takes two inputs: the encoder’s outputs HX and the embeddings of the
target sequence up to step t — 1, denoted by Eét = (ef, eZY, c erY71)‘

The decoder also consists of multiple layers of self-attention and feedforward net-

works, and its output at step ¢ is:

HtY = Decoder(EZt, HX)

where H! is the hidden state for time step t. Finally, the conditional probability of
the next word y; is computed as:

Plye | y1,y2, .. g1, X) = softmax(WoHtY)

where W is the output projection matrix.

For example, consider a translation task where we want to translate the English
sentence ‘I love you" (source sequence X) into French (‘Je t'aime’). The encoder
processes the source sentence to create context-aware representations. Then, the
decoder starts generating the target sequence ‘Je', 't", "aime’ step-by-step. At each
step t, the decoder uses both the previously generated words and the encoder’s

output to predict the next word until the full translation is generated.
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The Transformer Architecture
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Figure 11.5: The Transformer encoder-decoder model consists of two main compo-
nents: an encoder that processes input sequences using self-attention and feed-
forward networks, and a decoder that generates output sequences while utilizing
masked self-attention and encoder-decoder attention (i.e. cross-attention). Both
the encoder and decoder are composed of multiple stacked layers, with positional
encodings added to embeddings to maintain token order.
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The Transformer model consists of an encoder-decoder architecture as shown in
Figure 11.5. Both the encoder and decoder are composed of multiple identical
layers. Since the Transformer model doesn't have any recurrence or convolution,
it lacks a way to handle the order of the sequence. To overcome this, positional
encodings are added to the input embeddings to give the model information about

the position of the tokens in the sequence’:
. pPos
S o P>
| E(POSer) = s ( 100002i/d|w10(lel )
pos
D . = R E—
| E(pos,ZHrT) = €05 (100002[/dmodel )

where PE(pos, i) is the positional encoding at position pos and dimension i, dodet
is the dimensionality of the model, pos is the position of the token in the sequence,
and i is the dimension index (0 to dy0get — 1). Figure 11.6 illustrates how sequence
order information is incorporated into the token embeddings to produce the final
sequence embeddings used by the Transformer model. Figure 11.7, presents an
example of sinusoidal positional embeddings. These embeddings use sine and cosine
functions to encode position information into the sequence. The sinusoidal functions
ensure that each position has a unique representation. This approach helps maintain
sequence order in the model's input.

’For more information about positional encoding, please check this page https://
machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/


https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
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Transformers

Embedding model Positional encoding model

[T 7771

This is a Test

Figure 11.6: Positional encoding is used to incorporate sequence order information,
as Transformers do not inherently capture the order of elements in a sequence.
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Figure 11.7: The sinusoidal positional embedding matrix represents a sequence of
length 50 with a dimensionality of 256. Each position in the sequence is uniquely en-
coded using sine and cosine functions. These embeddings provide position-related
information to the model, helping it understand the order of elements in the se-
quence. The resulting matrix has 50 rows, each containing a 256-dimensional em-
bedding that corresponds to a specific position in the sequence.

The Transformer architecture given by

e Encoder
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Input Embedding + Positional Encoding

for each layer (:
X = LayerNorm(X'™" + MultiHead(X'=", x!=1, xt=1)
X! = LayerNorm(X! + FFN(XY)

Output of Encoder = X"

e Decoder

Input Embedding + Positional Encoding

for each layer (:
¥ = LayerNorm(Y'~™" + MaskedMultiHead(Y'=", v!=1, y&=T))
y! = LayerNorm(¥! + MultiHead(¥!, XN, XN))
y! = LayerNorm(Y! + FFN(V!)

Output of Decoder = YN

e Final Linear and Softmax Layer

The output of the decoder is transformed into the final output probabilities
through a linear layer followed by a softmax function:

Output Probabilities = softmax(YN Winal + Dfinal)
The architecture has three new ideas:

1. Add & Norm: involves applying a residual connection followed by layer nor-
malization. It is given by:

LayerNorm(X + SubLayer(X)) (11.14)

Residual connections, also known as skip connections shown in Figure 11.8,
are a crucial component in deep neural networks, including the Transformer
architecture. They were introduced by He et al. in their work on ResNet [43].
In general, gradients can become extremely small during backpropagation in
very deep networks, making it difficult for the network to learn. This is known
as the vanishing gradient problem. Residual connections allow gradients to
flow more directly through the network, helping to mitigate this issue. By
providing an alternative path for the gradient, they ensure that the learning
signal can reach earlier layers more effectively. Moreover, the Transformers
rely on positional encodings to maintain the order of the sequence. Hence,
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residual connections help preserve this positional information throughout the
network.

Block of layers

Figure 11.8: The residual connections allow the original input to bypass one or
more layers and then add it back to the output of those layers, which helps mitigate
the problem of vanishing gradients and improves model convergence.

To demonstrate the mathematical utility of residual connections, let's calculate
the derivative with respect to the input of a residual network. We start with the
loss function £ defined over the output y. Let's denote the loss as a function
of the output:

E = E(Y, Yirue), (11.15)

where ygre is the true output.

Given the residual network defined as:

y = F(x, W) +x (11.16)

We can apply the chain rule to compute the gradient of the loss with respect
to the input x:
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JE  0E oy
— =" = 117
ox dy O0x ( )
Hence,
dy
— = l, 11.18
o F T (11.18)
i _ OF(xW) . . y e . )
where JF = =5:— is the Jacobian matrix of the residual function and I is the

identity matrix.
Thus, we can rewrite the derivative of the loss with respect to the input as:

JE  O0E

— = (Ur+I 11.19

I ag(r ) (11.19)
This equation highlights how the gradients from the loss propagate through
both the residual function and the identity mapping, improving the flow of
gradients during backpropagation in deep networks.

2. In Layer Normalization”, each input x is normalized by subtracting the mean
and dividing by the standard deviation, and then scaled and shifted by learn-
able parameters y and .

Given an input vector x with dimensionality d:

Compute the Mean:

Q|

1 d
i=1

Compute the Variance:

1
o’ == (x—u)

Q
=

i=1

3Another form of normalization is Batch Normalization (BN) which normalizes the input to a layer
over a mini-batch of data. This is done by using the mean and variance statistics computed from the
mini-batch during training. This normalization is given by:

1 m
. Xi— 5 i Xi
{= m i

L (X — pg)’ + €

where m is the batch size, and x; are the inputs in the batch. Since BN relies on batch statistics, it
can be problematic in sequence models due to variable sequence lengths and smaller batch sizes for
longer sequences. This leads to noisy estimates of the mean and variance, resulting in less effective
normalization. On the other hand, layer normalization is more suited for sequence models because it
normalizes across the features for each sequence element independently, avoiding issues related to
batch statistics.
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Normalize the Input:
Xi— U

Vol+e

Here, € is a small constant added to the variance to avoid division by zero.

A

X =

Scale and Shift:
yi=v&i+B

Here, y and B are learnable parameters. After normalization (%;), the nor-
malized values %; have a mean of 0 and a variance of 1. The final output
y; = yX; + B will have the mean and variance determined by y and 5. Specif-
ically: The scaling by y and shifting by 8 do not directly enforce a specific
mean or variance on y. Instead, they allow the model to adjust the normalized
output flexibly.

3. Cross-attention (i.e. Encoder-Decoder Attention): This layer allows the de-
coder to focus on appropriate parts of the input sequence, using the encoder’s
output. It was given by

MultiHead(AY[, XN, XN)),

where the K and V are from one sequence and Q is from another sequence. It
was originally introduced in [44, 45] for a machine translation application but it
can be used for other applications where the encoder is from speech or image.
At different stages, the decoder may need to focus on various source tokens
that are most relevant to that particular step. By looking at the attention
weights, we can identify which source tokens the decoder uses, as illustrated
in Figure 11.9. The two examples demonstrate that the attention mechanism
has established a (soft) alignment between source and target tokens, showing
that the decoder concentrates on the source tokens being translated at that
moment.
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Figure 11.9: The attention weights in the cross-attention module can be used to
identify the alignments between target tokens and source tokens. In this example,
we have one attention head, and an attention score is calculated by applying a
multi-layer perceptron (MLP) to the encoder and decoder state vectors. Specifically,
the score is computed as score(q, k) = wg tanh(Wq[q, k]) [44] This is referred to as
Bahdanau’'s attention scoring function, while in Transformers, we utilize a scaled
dot-product attention scoring function.

This detailed architecture highlights the key components and processes involved
in the Transformer model, showcasing its ability to effectively handle long-range
dependencies in sequences through self-attention mechanisms.

Attention mechanisms and Recurrent Neural Networks (RNNs) are two powerful
approaches in the field of deep learning, particularly for sequence modeling tasks
such as natural language processing. Table 11.1, shows a detailed comparison of
attention mechanisms and RNNs:

11.5 Training and Inference for Encoder-Decoder Framework

In a Transformer model, the training objective is typically designed for sequence-
to-sequence tasks such as machine translation, text generation, or other conditional
language modeling tasks. The objective is to minimize the difference between the
predicted output sequence and the ground truth sequence.

11.5.1  Cross-Entropy Loss for Transformer Models

Given a dataset with input sequences X and corresponding target sequences Y, the
model is trained to minimize the cross-entropy loss between the predicted proba-
bility distribution and the true distribution over possible output tokens.
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Let X = (x1,x2,...,xm) represent the input sequence and Y = (y1,y2,...,Yyn) rep-
resent the corresponding target sequence, where n is the length of the sequence
and y; represents the token at position i in the target sequence.

The Transformer predicts the probability distribution over the vocabulary P(y; |
X, y1.i—1) for each time step i by using the self-attention mechanism and feedforward
neural networks. The goal is to maximize the likelihood of the correct sequence Y
given the input sequence X.

The training objective can be formulated as minimizing the cross-entropy loss:

n
E=—) logPyi| X yii1), (1120)

i=1
where P(y; | X, yq.i-1) is the probability predicted by the model for the token y;
at position i, conditioned on the input sequence X and the previously generated
tokens y1..—1 and n is the length of the target sequence.
The model is trained using backpropagation to minimize the cross-entropy loss E.
The gradients with respect to the model parameters (e.g., weights in the attention
layers and feedforward networks) are computed and updated using an optimizer like
Adam.
In summary, the training objective for a Transformer model is to minimize the cross-
entropy loss over the predicted probability distributions for the target sequence,
ensuring that the model generates the most likely correct sequence given the input.

11.5.2 Inference for Transformer Models

The transformer model uses either greedy search or beam search during inference.
Creedy search selects the highest probability token at each step to generate the
sequence, which is fast but may not yield the best result. Beam search, on the other
hand, explores multiple possible sequences by keeping the top-k candidates at each
step, leading to better-quality results. However, beam search is more computation-
ally intensive compared to greedy search. Inference in the model halts when it
reaches a predetermined maximum number of steps. Alternatively, the generation
can also terminate when the model outputs the "EOS" token, signaling the end of the
sequence. This mechanism ensures that the output remains concise and relevant.
By using these criteria, the model effectively manages the length of the generated
sequences.

In Encoder-Decoder or sequence-to-sequence (Seq2Seq) models, given an input
sequence X = [X1,x2,...,xm}, the goal is to generate an output sequence Y =
[y1,Y2, ..., yn) Greedy search is the simplest approach where, at each time step,
the word with the highest probability is chosen. This can be represented mathe-
matically as:
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yi =argmax P(y; | y1,y2, ... yi1, X) (11.27)
yi

The probability P(y; | y1, ..., yi—1, X) is computed by the decoder at each time step.
This approach may lead to suboptimal solutions because it doesn’'t explore other
sequences that may have higher overall probability.

Beam search is an improvement over greedy search. Instead of selecting the best
word at each step, beam search maintains the top-k candidate sequences (beam
width) at each time step. At every time step, for each of the top-k candidates, it
expands the next possible tokens and selects the top-k from the expanded list based
on the cumulative probability. Figure 11.10 depicts the beam search algorithm with
a beam width of 2 and a sequence length of 3. It shows how the algorithm explores
potential sequences. The limited width allows for a focused search. Overall, the
sequence length is set to 3, indicating the number of steps in the search process.
Let SO =1 (10, g(zl), gf-l)] represent the candidate sequences at time step i, where
[ is the index for beam search (i.e, there are k candidate sequences). The beam
search objective is to maximize:

SW — arg n;%x Z log P(gy) | gg[), g(zl), Ce Uj‘l)q . X) (11.22)
j=1
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Figure 11.10: An illustration of a beam search algorithm featuring a sequence length
of 3 and a beam width of 2.

Greedy search can get stuck in local optima because it only considers the immediate
next step. Beam search mitigates this by maintaining multiple candidates at each
step, but at the cost of increased computation. A comparison between the greedy
search and beam search is summarized in Table 11.2.

11.6  Assignment

Implement a neural machine translation algorithm using the Transformer model using
the Keras deep learning library and Google colab. To load the dataset, please visit
https://github.com/SamirMoustafa/nmt-with-attention-for-ar-to-en/blob/
master/ara_.txt.


https://github.com/SamirMoustafa/nmt-with-attention-for-ar-to-en/blob/master/ara_.txt
https://github.com/SamirMoustafa/nmt-with-attention-for-ar-to-en/blob/master/ara_.txt
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Recurrent Neural Networks

Aspect Attention Mechanisms
' (RNNs)
- Sequential Processing: Processes : .
. ! J - Direct Interaction: Accesses all
input sequences one element at a .
" elements of the input sequence at
ime. .
o . each time step.
. - Recurrence: Maintains a hidden .
Overview I . - Weighted Sum: Computes a
state capturing information about . .
. weighted sum of input elements
previous elements. . .
. using a learned attention
- Variants: Includes LSTMs and .
: mechanism.
GRUs for long-range dependencies.
1. Fully parallelizable, leading to
1. Naturally suited for temporal faster training times.
P sequences. 2. Handles long-range
ros _ . . .
2. Encodes entire sequence into a dependencies effectively.
compact hidden state. 3. Provides insights into model
focus, enhancing interpretability.
1. Cannot be easily parallelized;
slow training. 1. Computationally expensive for
C 2. Challenges with long-range long sequences.
ons

dependencies.
3. Susceptible to gradient issues
(vanishing/exploding).

2. High memory usage for storing
attention weights.

Performance and
Efficiency

- Slower training speed due to
sequential computation.

- More compact memory footprint
for hidden states.

- Much faster training due to
parallelization.

- Requires more memory for
attention weights.

Flexibility and
Usability

- Good for sequential data
applications.

- Limited interpretability compared
to attention mechanisms.

- Contextually aware of the entire
tnput sequence.

- Natural way to visualize model
focus, aiding interpretability.

Conclusion

- Suited for tasks where sequential
data is crucial, but struggles with
long-range dependencies.

- Excel at capturing long-range
dependencies and context,
becoming the go-to approach for
many NLP tasks.

Table 11.1: Comparison of Attention Mechanisms and RNNs.
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Table 11.2: Comparison of Greedy Search and Beam Search
Method Pros Cons
Greedy Search | Simple, fast, and compu- | Suboptimal in  many
tationally efficient. cases since it doesn't
explore alternative se-
quences.
Beam Search Explores multiple possi- | More  computationally
ble sequences, providing | expensive; still  not

better quality results.

guaranteed to find the
global optimum.







Finally, we make some remarks on
why linear systems are so
important. The answer is simple:
because we can solve them!

— Richard Feynman

State Space Models (SSMs) employ linear recurrence mechanisms, a characteristic
that contrasts with the non-linear recurrent structures found in the Recurrent Neu-
ral Networks (RNNs) described in Chapter 10. In this chapter, we explore structured
state space models (54) and selective state space models (56). These models en-
hance the ability to capture long-range dependencies in time-series and text data.

12.1  Discrete-Time State Space Model

The Structured State Space Sequence Model (54) is a deep learning architecture
designed for efficient long-sequence modeling. It combines continuous-time state
space models (SSMs) with structured parameterizations and HiPPO (High-order
Polynomial Projection Operators) theory. The core of S4 is a linear time-invariant
(LTI) system described by:

dh(t)
= Ahlt) + Bx(t) (12.1)
y(t) = Ch(t) + Dx(t), (12.2)

where:

- h(t) € RN is the hidden state at time t,
- x(t) € R is the input at time ¢,

- y(t) € R is the output at time ¢,

- A€ RV*N is the state transition matrix,
- B e RN*1 s the input matrix,
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- C € RN is the output matrix,
- D € R is the skip connection (optional).

171

To be able to use a discrete input sequence, the bilinear transformation discretizes

the continuous-time state-space model:

dh(t) - hie — hg_q
de = A

where A is the discretization step size (sampling interval).
Substituting this into the state equation:

A 2 2

Rearranging terms to solve for hy:

he — hiq _A (/7k+/7/<—1) +B(X/<+Xk_1)

A A
he —hrq = §A(/7/< + hy—1) + §B(Xk + Xk—1)

Collecting hi terms on the left-hand side:

A A A
hye — §A/7/< = hy_1+ iA/7/<—1 + zB(Xk + Xk—1)

Factor out hy:

A A A
(/2 ) he = (/+ ZA) hik + iB(Xk+X/<*1)

Solving for hy:

A\ A ANTTA

We approximate xx &~ Xx_1:

-1 -1
hy = (/—éA) (/+§A) hi 1+ (/—gA) ABx

Hence:

hi = Ahi—1 + Bxi,

and

Yk = Chg + Dxg,
where A = (/— %A)f1 (/ + %A), B = (/ — %A)i1 AB and C = C.

(12.3)

(12.4)

(12.5)

(12.6)

(12.7)

(12.8)

(12.9)

(12.10)

(12.11)
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In addition to bilinear discretization, the zero-order hold (ZOH) discretization can
be utilized as well. It assumes that the sampled signal remains constant between
consecutive sampling points. For the ZOH discretization, the A, B, C are given by
A=e" B= (AT (A—=NAB and C = C.

12.1.1  Training SSMs

Instead of processing sequences step-by-step (like RNNs), SSMs exploit their linear
time-invariant (LTI) property to convert the recurrent state-space equations into a
global convolution kernel. This kernel allows parallel computation of outputs across
the entire sequence, drastically speeding up training.

The convolution kernel K is derived from the discretized system given in Equa-
tion 1210 and Equation 12.11:

-At k =0: hg = B xp, yo = CBxg

- At k =1: hy = ABxg + Bx1, y1 = CABxo + CBx

-Atk=m: h, = E'”EXO + qug)q + -+ Bxp, Ym = CEIHEXO + CEHF1EX1 +
-« 4 CBx,,

Thus, the sequence of outputs {yo, y1,y2, ...} is given by, excluding Dx, (handled
separately):
y=xxK, (1212)
where , .
K = [CE, CAB, CA'B, ..., CA~ E], (12.13)

where L is the sequence length.
The convolution x*K is computed efficiently using the Fast Fourier Transform (FFT):

y =F "(F(K)o F(x) + Dx, (12.14)

reducing complexity from O(L?) (naive convolution) to O(L log L).

Unlike RNNs, during the training phase of the S4 model, a convolutional architecture
is employed to optimize the learning process, enabling parallel computation across
input sequences for enhanced efficiency. By processing entire sequences simulta-
neously through convolutional operations, the model accelerates parameter updates
and captures long-range dependencies effectively without gradient vanishing/explo-
sion. This approach leverages the inherent parallelism of convolutional setups to
reduce training time while maintaining robust performance. However, during infer-
ence, the model transitions to a recurrent formulation, which processes inputs step-
by-step rather than in bulk. This recurrent mode allows for real-time or sequential
task execution, as it generates outputs incrementally with minimal computational
overhead at each step. The shift from convolutional training to recurrent inference
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ensures both efficient learning and streamlined deployment, balancing speed during
training with adaptability in practical applications. On the other hand, precomputing
K for long sequences requires significant memory (mitigated by chunking).

12.2 HiPPO Initialization for S4 Models

A standard state-space model (SSM) demonstrates weak empirical performance and
struggles to capture long-range dependencies effectively. One possible explanation
is that linear first-order ordinary differential equations (ODEs) inherently solve to
exponential functions, leading to gradients that scale exponentially with sequence
length. This issue also arises from their formulation as a linear recurrence, where
repeatedly applying a recurrent matrix results in the well-known vanishing or ex-
ploding gradient problem commonly observed in recurrent neural networks (RNNs).
The HiPPO framework initializes A to optimally project historical input x(t) onto
polynomial bases (e.g., Legendre polynomials). The HiPPO-LegS [46] matrix for
scaled Legendre basis is:

2n + N2k + 1)V if n >k,
Ax=—41n+1 if n =k,

0 otherwise.

This allows the state h(f) to compress the history of x(t) into coefficients of an
orthogonal polynomial basis.
To reduce computational complexity, A is constrained to a diagonal plus low-rank
(DPLR) structure:

A=N\—-PP*,

where A € CN*N s diagonal, and P € CN*" is low-rank. Hence, this enables O(N)

parameters instead of O(N?) and efficient computation via conjugate symmetry and
FFT.
Earlier research demonstrated that replacing a randomly initialized state-space
model (SSM) matrix A with the HIPPO matrix significantly enhanced performance
on the sequential MNIST classification benchmark, increasing accuracy from 60% to
98%.

12.3  Selective State Space (S6) Models

In traditional SSMs (e.g., S4), the convolution form arises because the system is
linear time-invariant (LTI), meaning A, B, and C are fixed and do not depend on the
input or time. Selective State Space (S6) Models [47], or Mamba models, introduces
a selection mechanism to make the SSM more flexible and efficient. In particular,
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B and C are input-dependent, breaking the LTI assumption in Mamba models. This
means the convolution form must be adapted to account for the time-varying nature
of B and C. The selection mechanism modifies the matrices B and C based on the
input x¢. This is achieved through learned projections:

Bx = B - Linearp(xk)
Ce = C - Lineare(xk)

where Linearg and Linearc are learned linear transformations and Bi and Ci are
input-dependent matrices. Hence, the Mamba model is given by

he = Ahi_1 + Bixi (12.15)
Yk = Crhi + Dxg (12.16)

Because Bx and (i vary with time, the convolution kernel K is no longer fixed.
Instead, the output y can be expressed as a time-varying convolution:

k .
Yk = Z Ckﬂkﬂgixz (12.17)
i=1

Here, the kernel K is implicitly defined by the time-dependent terms C, and B;.
This formulation is more complex than the traditional SSM convolution because the
kernel depends on both the current time step k and the past time steps i.

Mamba computes the hidden states {h;} efficiently using a parallel scan algorithm
(similar to prefix sums), enabling parallel training despite the sequential recurrence:

he =A- hg_1+ Bi - k.

This avoids O(L?) complexity and leverages modern hardware (GPUs/TPUs).
The parallel scan algorithm leverages the associative property of linear recurrence
to hierarchically compose transformations:

"Consider the linear recurrence relation in Mamba:

he = Aheq + Bexe

For a sequence of length L, the hidden states can be unrolled explicitly:

t
p— — 7/ p—
he=Aho+Y A Bux
k=1
A naive parallel implementation would attempt to compute each h; independently by:

. = o= =2 —L . . . .
1. Precomputing all powers of A: Computing A, A", ..., A requires L matrix multiplications. How-

. ' ) . —t—k ) .
ever, to avoid sequential computation, one might compute all A~ terms directly, leading to
O(L?) operations since there are [ x t terms for t =1,..., L.

. t  —i—k—= . .
2. Summing over all terms for each hy: For each h¢, the sum ) ,_; A~ Bixi involves t matrix-
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e Associative Reformulation: The recurrence can be viewed as applying a linear
operator Tx = (A, Bixk) to the state hx_1. These operators compose associa-
tively:

TioTj = (A Bxi)o (A Byx,) = (A ABix; + Bjx)),
where (Tio Th)o T3 = T1o(Th 0 T3)?

e Tree-Based Computation: The scan algorithm proceeds in log [ layers: Layer
1. Compose adjacent pairs (710 72), (T30 74), ... in parallel. Layer 2: Compose
results from Layer 1 into chunks of 4 steps, etc. After logl layers, the full
sequence is covered.

e Work Complexity: Each layer performs O(L) compositions. With log L layers,
the total work is O(Llog L).

Example for L =4
1. Step 1: Compute local transformations:
I, T 13 T4
2. Step 2: Compose adjacent pairs in parallel:

To=Tiol, T34=1T3014

3. Step 3: Compose results to cover the full sequence:

T4 =Ti20 134

vector multiplications. Across all L states, this results in Zﬁ:ﬁ t = w = O(L?) operations.
Please note for sequential recurrence, the complexity is O(L).

Thus, the naive approach is quadratic in sequence length due to redundant computations.
2Actually, we represent each step as a linear operator T, that maps (hi_1,1) to (hy, 1):

_ A Eka hi-a o hy
Tk‘(o 1 ) Tk( 1) 7\
The "1" is a dummy dimension to handle the affine term.
These operators compose associatively:

TLOTj: (A BLXi)O(A BJXJ‘):

ﬁz TB[X[ -‘rE/X/'
0 1 1

0
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4. Output: Extract all hy by combining partial results. To recover all h; (not just
hs), we store intermediate results: h1 = T1hg, ho = T12ho, h3 = T12 0 T3ho,
and hq = T1.4ho.

Total operations: 4 (Step 1) + 2 (Layer 1) + 1 (Layer 2) = 7 compositions.

The parallel scan avoids O(L?) by reusing intermediate computations (like dynamic
programming), exploiting associativity to hierarchically merge chunks, and leverag-
ing parallelism with O(L log L) work instead of brute-force O(L?).

Selective SSM blocks can be integrated as independent transformation units within
a neural network, similar to how RNN cells such as LSTMs or GRUs are utilized. The
complete structure of a Mamba block extends beyond just the SSM module discussed
earlier. It includes additional components such as linear projections, convolutions,
and non-linear activation functions that work alongside the SSM block within the
broader Mamba architecture. The Mamba block is shown in Figure 12.1.
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Linear

SSM (S6)

Causal
Convolution

Linear Linear

)
N\

Figure 12.1: A Mamba block [47].

Transformers rely on attention mechanisms to model long-range dependencies, whereas
Mamba is based on structured state-space models (SSMs), making it more effi-
cient for sequential tasks. Transformers have high computational complexity due to
the quadratic scaling of self-attention, whereas Mamba significantly reduces com-
plexity by achieving linear scaling with sequence length. In terms of inference
speed, Transformers require O(L) operations due to attention computations, while
Mamba operates in constant time O(1), making it more efficient for long sequences.
Training Transformers involves quadratic complexity O(L?), making them resource-
intensive, whereas Mamba benefits from linear training complexity O(L log L), lead-
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ing to faster convergence and reduced memory usage. While Transformers excel in
capturing global dependencies through attention, Mamba leverages selective state-
space modeling to process sequential information efficiently without explicit atten-
tion mechanisms. Overall, Mamba presents a promising alternative to Transformers,
particularly in scenarios where efficiency and scalability are critical, such as pro-
cessing extremely long sequences. A comparison between Transformer and Mamba
block is shown in Table 12.1.

12.3.1 Bidirectional Mamba models

Bidirectional Mamba (Bi-Mamba) extends the strengths of the Mamba architec-
ture (efficiency, selectivity) to bidirectional contexts, making it a powerful tool for
tasks requiring full-sequence understanding. While it sacrifices some autoregres-
sive capabilities, it outperforms Transformers and RNNs in memory efficiency and
long-context modeling for non-autoregressive applications. The basic structure of
Bi-Mamba has two blocks of Mamba: one block handles the past context and the
second block handles the flipped input (ie. future context). This is similar to Bi-
directional RNNs discussed in Chapter 10.

y = Mamba(x) + flip(Mamba(flip(x))) (12.18)
Feature Transformer Mamba
Architecture Attention-based | SSM-based
Complexity High Lower
Inference Speed O(L) o)
Training Speed O(L?) O(Llog L)
Memory Usage O(L?) O(L)

Table 12.1: Comparison between Transformer and Mamba.

12.4 Improvements based on Mamba

The Jamba Block is a key architectural component of the Jamba model [48] an
advanced hybrid neural network that efficiently combines state-space models and
attention mechanisms. The Jamba block is designed to leverage the long-range de-
pendency modeling of SSMs while incorporating the context-awareness of attention
mechanisms. Unlike traditional Transformers, which suffer from quadratic complexity
in sequence length, the Jamba block introduces a more efficient representation.

Jamba blocks (see Figure 12.2) combine Mamba's selective structured state space
models (SSMs) with Mixture-of-Experts (MoE) layers to enhance model capacity
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and computational efficiency. The MoE layer Scales model capacity efficiently by
routing tokens to specialized experts and it consists of N experts {E[-}ﬁ1 and a
trainable gating network G. For an input token x € RY:

The gating network computes weights for expert selection:

Wox + |
glx) = TopK (Softmax (m) ) , (12.19)

3

where Wy € RNxd, b, € RN: Gating parameters, and 7: Temperature hyperparam-
eter (often omitted, T = 1). The TopK: Retains only the top k values (others set to
0), followed by re-normalization.’

Fach expert E; is a feed-forward network (FFN):

Ei(x) = Wo; - 0 (Wiix +br) +bay, (12.20)

where o: Activation function (e.g, GelLU, SiLU) and Wq; € R"™ W, € R/
Expert parameters.
The final output combines selected experts via gating weights:

N
y=> g% Elx) (1221)
i=1

The Jamba block integrates selective attention to enhance the capabilities of State
Space Models (SSMs) by capturing dynamic token interactions efficiently. Instead
of applying full self-attention, it strategically incorporates attention only where nec-
essary, reducing computational overhead while preserving expressivity. While SSMs
excel at handling long-range dependencies, attention refines both local and global
interactions, improving sequence modeling. This hybrid approach enables Jamba to
balance structured memory processing with adaptive token relationships, ensuring
both scalability and strong performance in NLP and speech tasks. By leveraging at-
tention in a controlled manner, Jamba maintains efficiency while outperforming pure
SSM-based models like Mamba. Ultimately, attention in Jamba plays a crucial role
in optimizing information flow, making it a powerful alternative to traditional Trans-
former architectures. Based on a sequence of 4 Jamba blocks, the Jamba language
model was successfully trained on context lengths of up to 1M tokens.

3The top k values (e.g, k = 2) experts process each token, limiting compute costs.
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Figure 12.2: A single Jamba block [48].






Although initially introduced and
studied in the late 1960s and early
1970s, statistical methods of Markov
source or hidden Markov modeling
have become increasingly popular
in the last several years. There are
two strong reasons why this has
occurred. First the models are very
rich in mathematical structure and
hence can form the theoretical basis
for use in a wide range of
applications. Second the models,
when applied properly, work very
well in practice for several
important applications.

— Lawrence R. Rabiner

This chapter presents probabilistic learning methods. These approaches are widely
used due to their simplicity and effectiveness. They are computationally efficient,
making both training and inference straightforward. One well-known example is
Hidden Markov Models (HMMs), which played a crucial role in speech recognition
for decades. Before deep learning innovations, HMMs were the dominant method
in this field. They were eventually replaced by more advanced techniques like
recurrent neural networks (RNNs) and transformers. A key feature of probabilistic
models is their reliance on strong mathematical assumptions. These assumptions
often enable efficient derivations, reducing computational complexity. Additionally,
they frequently lead to closed-form solutions, simplifying optimization. Despite their
limitations, probabilistic learning remains valuable in many applications.
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13.1  Naive Bayes Multiclass Classification

The Naive Bayes classifier is a probabilistic model based on Bayes' theorem with the
naive assumption that features are independent given the class label. Despite this
strong assumption, it performs well in many applications, such as text classification
and spam detection. For discrete features, it is known as multinomial Naive Bayes
classifier.

Bayes' theorem states that for two events A and B:

P(B|IAYP(A)
P(B)
In the context of Multiclass classification, let C be the class label (e.g., spam or not

spam) and x = (x1, X2, ..., Xq) be the feature vector.
Then, the posterior probability of class Ci given the features is:

P(A|B) = (13.1)

P(x|Cx)P(C)

P(Ck|x) = 13.2
(G = =5 (132)

Since P(x) is the same for all classes, we use the proportional form:
P(Ci|x) o< P(x| C) P(Ci) (13.3)

The Naive Bayes assumption simplifies the computation by assuming feature inde-
pendence, meaning:

d
P(x|Ck) = |_| P(xi| Ck) (13.4)
i=1
Thus, the posterior becomes:
d
P(Cilx) o< P(C) [ | POl Gi) (135)
i=1

The classifier assigns x to the class with the highest posterior probability:

d
C = argmax P(C) [ ] P(xil C) (13.6)
Ck i=1
For discrete features, such as text classification (word counts), we model word oc-
currences using:

Ni,/<

PlalC) = 5

(137)
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where Nk is the count of word x; in class Cx and N is the total count of words in
class Cy.

To prevent zero probabilities when a word is missing from a class, we apply Laplace
Smoothing (Laplace Correction):

/\/g,k + 1

N+ V'

where V' is the vocabulary size (total number of unique words).
Example: Assume we classify emails as spam (S) or not spam (=5), based on words
(free’, 'win’).

P(xi|Ci) = (138)

Class "free" count | "win' count | Total words
Spam (9) 4 3 10
Not Spam (=5) 2 1 8

Table 13.1: Word occurrences in spam and non-spam emails

Using Laplace smoothing (V' = 3 since we consider three words: ‘free’, 'win’, and an
unseen word):

441 5
P(free’|S) = = — 13.
('free'|S) 01313 (13.9)
341 4
P(win'|S) = = — 13.10
(winlS) = 1073 = 13 (13.10)
For non-spam:
2+1 3
P(free’|=S) = 87::—_3 T (13.11)
T4+1 2
WMW®=£§=H (1312)

Given P(S) = 0.6 and P(=S) = 0.4, the posterior probabilities for a new email
containing ‘free win" are:

P(S|'free win') o< P(S)P('free’|S)P('win'|S) (13.13)
5 4
—0.6x = x = (13.14)
P(=S|'free win') o< P(=S)P(free’|=S)P(‘win'|=S) (13.15)
_04x S x 2 (13.16)

M1 M
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Computing these values, we choose the class with the highest probability.

Naive Bayes is simple and efficient, even with its strong independence assumption.
It works well in many practical scenarios, especially text classification and spam
filtering.

13.2 Gaussian Models

0.40 A —_02=1
o 65% (1o) foro? =1

0.35 95% (20) for o2 =1
99.7% (30) foro?=1

Figure 13.1: 1D Gaussian density with variance =1.

The probability density function (PDF) of a 1-dimensional Gaussian distribution’
(also known as the normal distribution) is given by (see Figure 13.1):

1 (x — )’

p(x) \/ﬁexp ( 557 ) , (13.17)
where x is the continuous random variable, p/ is the mean (center of the distribution),
0 is the variance (spread of the distribution), o is the standard deviation (square
root of variance), 7 is the mathematical constant approximately equal to 3.14159,
exp(-) denotes the exponential function.

The Gaussian function assigns higher probability density to values of x that are
closer to the mean and lower probability to values in the tails (far from p). It is
symmetric about the mean p, meaning the left and right sides of the distribution are
mirror images. The total area under the curve of p(x) is 1, which ensures that it is
a valid probability distribution:

"The Gaussian distribution or model is also called the bell curve due to its characteristic shape,
which is smooth and unimodal.
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/OO p(x)dx =1 (13.18)

—0Q

The empirical rule explains the distribution of data in a normal distribution, indicat-
ing that almost all values are within three standard deviations of the mean. More
precisely, around 68% of the data lies within one standard deviation, 95% falls within
two standard deviations, and nearly 99.7% is encompassed within three standard de-
viations from the mean. When the variance o increases, the curve widens (spreads
out), indicating more uncertainty or variation in the data. If the variance is small,
the Gaussian curve is narrow and peaked, indicating that most values are close to
the mean.

13.2.1  Properties of a Gaussian model

The Gaussian distribution has key properties, such as its normalized density func-
tion, which can be calculated along with its mean and variance. To derive the mean
and variance of a Gaussian random variable x with probability density function
(PDF) (see Equation 13.17):

The mean (expected value) of x is defined as:

0]
E[x] =/ xp(x)dx. (13.19)
Substitute the Gaussian PDF into this integral:
x| = — / AL v (13.20)
X| = xe 20° X. .
oV21 J-oo

Substitution: Let y = x — p. Then x = y + p, dx = dy, and the limits remain —oco
to oo:

1 o0 v
x| = / (y + p)e 22 dy. (13.21)
oV27 J—co
Split the integral into two terms:
1 © g © g
E[x] = / ye 272dy +LI/ e 22dyl, (13.22)
o) 2]7 —00 —00
N———

Odd function: 0
2

_ut i
where the first integral is zero because ye 2 is an odd function and the second
integral is the Gaussian integral:

) 2
/ e 2 dy = oV/27. (13.23)

—0Q
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Thus:

1
Elx| = U OV 27T = L. 13.24
[ } U\/E H Il L ( )

The variance is defined as:
Var(x) = E [(x — ) ] E[x?] — (E[x)>. (13.25)

First, compute E[x?]:

xu

20 dx. (13.26)

E[x?] =

aﬁ/

Substitution: Again, let y = x —p, so x =y + p, dx = dy:

E[x?] + 1)e zgzd 13.27
[ U\/TJ! J u y. ( )
Expand (y + u)*:
Bx2— — (yz + 20y + uz) e dy. (13.28)
oVt J-

Split into three integrals:

5 1 © Y 2 5 [ v
E[x7] = / y“e Zazc/g+2u/ ye 202dy+p / e 22dy |, (13.29)
o

27 —00 —00 —00

Odd function: 0

where the second integral is zero (odd function), the third integral is p? - o/2, and
for the first integral, we use the known result for the second moment of ¥ ~ N(0, 02):

o) 2
/ yle 2l dy = o>V 27, (13.30)

Substitute these results:

E[x?] [03\@ +0+ LIZU\E] = o+~ (13.31)

1
oV2n
Finally, compute the variance:

Var(x) = E[x?] — (E[x])> = (¢ + /%) — 1/ = o°. (13.32)

Hence, the parameter o2 in the Gaussian PDF is the variance of x.
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13.2.2 Multivariate Gaussian models

Spherical: £=1/ Diagonal: ¥ =diag(o?, 0%) Full Covariance: ¥

Figure 13.2: Gaussian densities in 2D with different covariance types.

The probability density function (PDF) for a d-dimensional Gaussian distribution
L2
is*:

1
exp |—=(x—p)' T x—p) |, (1333)

Y) —
p(x|u, X) >

1
(2ﬁ)d/2|z|1/2
where x € RY is the random vector, u e R is the mean vector, L € R7%9 is the
covariance matrix (symmetric positive definite), |Z| is the determinant of X, and X~
is the inverse of L.

The type of covariance matrix determines the shape of the contour plot for a Gaussian
density. A spherical Gaussian has equal variances in all directions, with off-diagonal
elements set to zero, resulting in circular contour plots. In contrast, a diagonal
covariance matrix allows different variances along each axis while maintaining zero
off-diagonal elements, leading to elliptical contours aligned with the coordinate axes.
A full covariance matrix, however, includes nonzero off-diagonal elements, indicating
correlations between dimensions, which causes the elliptical contours to be rotated.
Figure 13.2 illustrates the contour plots for these three covariance structures.
From a linear algebra perspective, eigenvalues and eigenvectors of a Gaussian's
covariance matrix describe its shape and orientation. Given a covariance matrix Z,
the eigen-decomposition is:

£ = QAQ", (13.34)

where Q contains the eigenvectors as columns and A is a diagonal matrix with
eigenvalues A1, Az, ..., Ag on the diagonal. The eigenvectors determine the principal
axes (directions) of the Gaussian’s elliptical contours. The eigenvalues define the
variance along those directions. In 2D, the contours of the Gaussian are ellipses,
and the lengths of the semi-axes are proportional to v/A; and /A2. As shown in

’The Gaussian density can serve as an activation function when applied to an input vector.
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Figure 13.3, these values control how stretched or compressed the Gaussian is in
each principal direction.
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Figure 13.3: Relation between Covariance matrix and eigenvectors and eigenvalues.

By definition, the mean p is the expected value of x:

p=Ex] = / x - p(x|u, ) dx, (13.35)
Rd
and the covartance matrix L is defined as:
£ Bx—uix—u'] = [ x—mc— ) plxlin ) dx (13.36)

The covariance matrix £ can alternatively be expressed as:

T = Exx'] — ExE[x] (13.37)
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which simplifies to:
L= Exx']—pp’ (13.38)

13.2.3 Learning Problem

Maximum Likelthood Estimation (MLE) is a method used to determine the parame-
ters of a Gaussian distribution that best fit the data. It finds the values of the mean
and covariance that maximize the likelihood of observing the given dataset. Given
a dataset of N ii.d’ samples {x1,x2, ..., xn}, we estimate the parameters p and £
using Maximum Likelthood Estimation (MLE).

The likelihood function for N independent samples is:

N
L D) =] [ pix) (1339)
i=1
Taking the log-likelithood:
L )= Zlogp xi|u, Z). (13.40)
i=1
Substituting the Gaussian PDF:
Nd N ~
- " o) _ - T
Ly, T) = ==~ log(271) — = log|Z| — 5 g ) = (i — ). (13.41)

Maximizing with Respect to p and using the matrix identity®:

x| Ax
ox

Take the derivative of L(u, ) with respect to pr:

— 2Ax. (13.42)

oL(p, L) — '
o Z — ), (13.43)

and set the derivative to zero:

N

1

(13.44)

M-
X

3iid. stands for independent and identically distributed where each sample doesn't affect or depend
on the others and all variables follow the same probability distribution. This assumption breaks down
when dealing with sequential data, where each observation often depends on the ones before it.
4The Matrix Cookbook: https://wwwZ2.imm.dtu.dk/pubdb/edoc/imm3274.pdf.
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Maximizing with Respect to Z: Let the scatter matrix S = ZZL (Xi— e ) (i — e )
and using the matrix calculus identities:

dlog|Z|

= puuty (13.45)

where |Z| is the determinant of X. Given the cyclic property of Trace: For matrices
A, B, C, we have tr(ABC) = tr(CAB) (if dimensions match). Applying this:

tr (= 1) 2 =) =t (£ = m)x— ) (13.46)

and the trace of a sum is the sum of traces (i.e. linearity of Trace), so:

N N
Z tr (271 (x;i — p)(x; — u)T) =tr (21 Z(Xi — ) (x; — u)T) . (13.47)
i=1 i=1
Therefore,

— (t|‘(Z’1S)) — 5 lsy T, (13.48)

Combining the Identities: The log-likelihood L(u, ) for a multivariate Gaussian (up
to constants) is:

N T (eq
L{n,E) = = log || - St (z 5) . (13.49)
Taking the derivative with respect to £ and applying the identities:
oLy, L) _ Ne ot | Teiaea _
5 -5 o+ ZZ S =0. (13.50)

Solving for £: multiply through by 2% (from the left and right) to eliminate the
inverses:

~NE+S=0 — zz%s. (1351)

This gives the maximum likelihood estimate (MLE) for the covariance matrix:

N
1 1
IMLE = NS =N ;(Xi — i) (X — pce) (1352)

The MLE covariance Iy is biased (divided by N) and consistent (converges to the
true parameter as N — 00).” An unbiased estimator uses N — 1 instead of N.°

A biased estimator in statistics is one whose expected value (mean) does not equal the true
parameter it is estimating. Mathematically, let 0 be an estimator of a parameter 6. The bias of 0
is defined as Bias(0) = E[0] — O where the estimator 8 is biased if E[0] #+ O else if E[0] = 0, the
estimator is unbiased.

5The Bessel correction is the use of (n — 1) instead of n in the denominator of the sample variance
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13.2.4 Gaussian Naive Bayes Classifier

For continuous features, we assume that each feature follows a normal distribution:

formula to make it an unbiased estimator of the population variance. Let x1, x2, ..., x,, be independent
and identically distributed (i.i.d.) 1D random variables with the true mean: p = E[x;] and true variance:

0% = Var(x;). To estimate the hiased sample variance 8Z,.., from the data, Since expectation is linear:

1 1 & 1
Ex]=E|— ==Y Exl=— nu=yp.
[X] |:I7 ;X:| 172 [X] n nH H

So, X is an unbiased estimator of 1. By expanding the squared differences (x;—X)> = (x, —p+p—Xx)°> =
(X — p)? + (u — x)? + 2(x; — ) ( — X), the biased sample variance:

E[a—bznasecl] = 1 Z E[(Xl - )_()2]

Substituting the expansion:
E[(x, — x)*] = El(x; — )] + E[(s — x)] + 2E[(x; — )1 — X)].

Calculating each term: E[(x;—u)?] = o (population variance) and E[(u—x)?] = Var(x) = Var (1 Y~ x;) =

n

2 .
”iz >_Var(x;) = % (variance of the sample mean). For the cross-term:

2

n o 2
El(xi — )t —x)]=E | (x. — p) /_I—EZXJ :E[_M] =—%,
j=1

because E[(x; — p)(x; — 1)} = 0 for i # j (independent samples).
Substituting these into the expression:

2 2 2
o o o
El(x; — x)*] = 0° + — +2 (——) =g°—- —.
n n
Thus, the expected value of the biased estimator is:

1 n 2 1 2 2 —1
- 13 (2] L[ ) A
=1

The expected value of the biased sample variance estimator is:

. n—1
]E[szmsed] = 02'

n

This shows that the biased estimator underestimates the true population variance o by a factor of
2=1 To correct this bias, we use Bessel's correction, multiplying by -2 to obtain the unbiased sample

n n—1
variance estimator:

n
A ’
unbiased —

n—1
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_(Xi - L/k,[)z
207

ki

P(xi|Ck) = exp (1353)

1
\/ 27’0/3,1'

where pi; and 0,3[ are the sample mean and variance of feature x; for class C.
By applying Bayes' rule as indicated in Equation 13.6, we select the class that has
the highest probability. The process of generative estimation for Gaussian densities
(models) is highly efficient and can be completed in a single pass through the
training data. We partition the training data according to their respective classes
and independently calculate the mean and variance or covariance for each class. It's
important to note that generative training does not differentiate between classes. As
a result, it does not make optimal use of the parameters compared to discriminative
training. Thus, while generative training is effective, it may lack the efficiency of its
discriminative counterpart.

13.3 Gaussian Mixture Models

0.200 ~~-- Component 1
Component 2

~=- Component 3

—— GMM (mixture)

0.175

0.150

0.125

0.100

Density

0.075

0.050

0.025

0.000

Figure 13.4: 1D Gaussian Mixture Model with 3 Components (Multimodal Density).

The Gaussian Mixture Model (GMM) is a powerful extension of the single Gaussian
density function, allowing us to model more complex, multimodal data distributions.
While a single Gaussian assumes the data is generated from one symmetric, bell-
shaped distribution centered around a mean, real-world data often exhibits multiple
clusters or modes. GMM addresses this limitation by combining several Gaussian
components, each capturing different subpopulations or structures in the data. This
makes GMM especially useful in tasks like clustering, density estimation, and un-
supervised learning, where the assumption of a single Gaussian is too restrictive.
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Moreover, GMM can approximate any continuous distribution given enough compo-
nents, making it a flexible and expressive model. By estimating each component'’s
mean, covariance, and mixing weight, GMM provides a probabilistic framework that
captures uncertainty and overlapping clusters in data. A GMM represents a prob-
ability distribution as a weighted sum of K Gaussian components:

K

p(X[0) = N (x|, Zi), (1354)
k=1

where ¢k is the mixing coefficient (weight) of the k-th component (2511 ce =1),
Uy is the mean vector of the k-th component, £ is the covariance matrix of the
k-th component, © = {ck,;lk,}:k}f:1 represents all parameters, and N (x|u, ) is
the multivariate Gaussian density.

As illustrated in Figure 13.4, the Gaussian Mixture Model (GMM) can represent any
arbitrary multimodal probability distribution.

Histogram of Data
0.40 —— Single Gaussian
~— GMM (2 Components)

Figure 13.5: 1D Gaussian Mixture Model with 3 Components (Multimodal Density).

Figure 13.5 demonstrates how using a single Gaussian to approximate complex,
multimodal data results in an inaccurate density estimation and leads to incorrect
modeling assumptions.

13.3.1 Learning Problem

The Expectation-Maximization (EM) algorithm is a powerful iterative method for
finding maximum likelthood estimates in probabilistic models with latent variables.
For Gaussian Mixture Models (GMMSs), EM provides an efficient way to learn the
parameters of the mixture components.
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Given data X = {x1, ..., xn}, and a probabilistic model with latent variables Z =
{z1,..., zn}, we want to maximize:
N
logp(X; 6) = > log ) plxn, 2, | 0) (13.55)
n=1 Zp
This is hard because of the log-sum over latent variables z, € {1,..., K} We

introduce a variational distribution g(z,) and apply Jensen’s inequality’ to the log-
sum [49, 50, 51]:

nr <r 9 nr <r 9
o> plxn, 20 | 6) = log ) oz P20 1 6) S q(z)log p(X’L)H (13.56)

alz Z
Zn Zn /( 17) Zn 9\zn

This gives a lower bound L(q, 9):

pXn. zn | 6)
L(g, 6) = zp) log —————= 13.57
(9.0) ;ﬁM)J oz (1357)
This is the Evidence Lower Bound (ELBO):
log p(x | 0) = Eq(z,) [log p(xn, 2o | O)] + H(q(zn)) (13.58)

Where H(g(z,)) is the entropy of g(z,). We now alternate:
E-Step (Optimize q): Set q(z,) = p(z | x; 0°Y), ie, the posterior over latent
variables using old parameters.

C/<N(Xn|uk: Zk)

q(zn = k) = v(zpk) = K
21 GN (Xnlp), E))

This is the responsibility of component k for point x,.

M-Step (Optimize 0): Maximize the ELBO w.rt. 6 = {ck, pe, Ek}, using the fixed

C/(Zn) = Vnk-

We maximize the expected complete-data log-likelihood. The joint probability of

observations X and latent variables Z factorizes as:

(13.59)

N N
pX.Z) = [ | plxn. z0) = [ ] plzn) plxn | 20) (13.60)
n=1

n=1

where p(z, = k) = ck is the prior probability of cluster k (mixing coefficient), and
p(xn | zn = k) = N(xp | pi, Zk) is the Gaussian likelihood.

’Jensen’s Inequality (general form) for a concave function (like the logarithm) and a random variable
x is f(E[x]) > E[f(x)] where equality holds if x is deterministic (no randomness).
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Thus:
N K
(2 llog p(X, Z)] ZZ Yok log[ck N (xn | pre, Zg)],
n=1 k=1
where:

Vok = p(zn = k | Xp) = responsibility

196

(13.61)

This splits into 3 terms. We optimize each one w.rt. ¢k, tg, Zg in the M-step.

1.

2.

Mixing Coefficients cy

We want to maximize:

N K K
Z Z Yok log ¢k subject to Z =1
1 k=1

Use Lagrange multipliers:

N K
E=ZZvnklogQ<+A

n=1 k=1

K
1—ZC/<)

k=1

Take derivative w.rt. ck:

Ynk
Z —A=0=c == Zynk
aCk n=1 Ck A n=1

Normalize:

K 4 N

ZC/(=1 :>)\:N:>CI<:NZV/7/<

k=1 n=1
Update:

1N
= N Z VYnk

Means pi,

We optimize:
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N
ﬁu = Z Ynk logN(Xn | M, Zk)

n=1

Focus on the log of the Gaussian (ignoring constants):

1 _
log N (x| i, Z) = _i(xn - ﬁ’k)TZk1(le — Hy)

Take derivative w.rt. p:

N
oL _
O 3 k) O
Hy P
Solve:
N N N
Z —1 YnkXn
Z YnkXn = H Z Vnk = Hi = ”Ninl
n=1 n=1 217:1 Ynk
Update:
Z,lq\/:1 YnkXn
=N
Zn:1 Vnk

. Covariance Matrices L,

Maximize:

N
Ls =) voklogN(xy | i, i)

n=1

Log Gaussian includes:

1 1 _
lOgN N ) log ‘Zk| - E(Xn - IJ/<)TZ/<1(XH — M)
Take derivative wrt. X, and set to zero:
N
2,7:1 Vnk(xn - Uk)(xn - H/<)T

N
2,7:1 VYnk

I =

197
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Update:

N
Zn=1 )/,7/<(X,7 - I~’/<)(X/7 - Hk)T

N
217:1 VYnk

-

4. Compute the log-likelthood:

N K
logp(X|©) = Y _log (Z SN e b zk))
k=1

n=1

Stop if the change in log-likelihood is below a threshold € or after a maximum
number of iterations.

The EM Algorithm Pseudocode for GMM:

Algorithm 13.1 EM Algorithm for GMM

1: Initialize ©10 = {c(ko),plf),):(ko)}f:1, using either random values or a clustering
algorithm like K-means (see Section 13.3.3).

2.t 0

3: repeat

4: E-Step:

5 for n =1to N do

6 for k =11to K do

/ Compute y(zpk) = % using current parameters @
8 end for

o: end for

10: M-Step:

11 for k =1to K do

12: Compute Ny = ZI/L1 Y(Znk)

13: Update c(ktﬂ) = NiIN

14 Update " = 5 Y0 vz

15: Update ZE:M) = /\/ik Zf}; V(Zni) (X — IJ(ktH))(Xn _ H5<t+1))7
16: end for

17: t—t+1
18: Compute log p(X[01) = YN . log (Zf=1 N (Xn i, Zi)

19: until convergence (| log p(X|0') — log p(X|@=)| < € or t > timax)
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13.3.2 Gaussian Mixture Naive Bayes Classifier

A more accurate Naive Bayes classifier for continuous features can be implemented
by modeling each class as a Gaussian Mixture Model (GMM), which captures multi-
modal distributions better than a single Gaussian. By representing each class
with a mixture of Gaussians, the classifier improves flexibility while maintaining
the Naive Bayes assumption of feature independence. This approach allows for
more precise probability density estimation, enhancing classification performance
on complex datasets. The parameters of the GMM for each class can be efficiently
learned using the Expectation-Maximization (EM) algorithm.

The Naive Bayes assumption enforces that features are conditionally independent
given the class and mixture component. Thus, the covariance matrix Xy , is diagonal:

: 2 2 2
Z/<,I77 = dlag(ak,mﬂ ' ak,m,Zr c Uk,m,d) (1362)

So, the class-conditional density simplifies to:

My d
px|C = k)= Z Ck,m |_|N(Xj|,~’k,m,jl Ui,m,j) (13.63)
=1

m=1

Using Bayes' theorem, the posterior probability of class k given x is:

x|C = k) P(C = k
P(C = K|x) = P p()x) ( ) (13.64)

where the marginal likelthood p(x) is:

K

pix) = p(x|C = k) P(C = k) (13.65)
k=1

The predicted class C is the one that maximizes the posterior probability:

"

C = arg max P(C = k|x) = arg max p(x|C = k) P(C = k) (13.60)

13.3.3 Connection with K-means

IKK-Means is an iterative clustering algorithm that partitions data into K distinct
clusters by minimizing the within-cluster variance® The objective function (Inertia):

N K
J=3" > rikllxi — el (13.67)
=1 k=1

i

8The K-Means standard algorithm was first proposed by Stuart Lloyd.
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where x; € R? is a data point, u is the centroid of cluster k. The ry € {0,1} is an
indicator:
1 if x; is assigned to cluster k,
i = (e (1368)
0 otherwise.

The Lloyd's algorithm is usedAlgorithm Steps:

1. Initialize K centroids randomly.

2. Assignment Step: Assign each point to the nearest centroid:

i — aramin;: |lx: 2
e 1 if k=argmin;||x; — [,
7. S .
0 otherwise.

3. Update Step: Recompute centroids as the mean of assigned points:

N
2o likXi
[

> o1 ik
4. Repeat until convergence (centroids stabilize).

The K-Means algorithm can be viewed as a constrained version of Gaussian Mix-
ture Models (GMM) with specific simplifying assumptions. While GMM employs

probabilistic soft assignments ry = % K-Means uses deterministic hard
J tUE =)

assignments (rix € {0, 1}) where each point belongs exclusively to one cluster. Fur-
thermore, GMM typically allows for general covariance matrices, whereas K-Means
effectively operates with isotropic, spherical clusters of equal variance. Another key
difference lies in cluster weighting: GMM learns individual weights for each com-
ponent, while K-Means treats all clusters as equally important. These restrictions
make K-Means a special case that emerges when GMM is constrained to uniform
weights ¢, = 1/K, hard assignments, and spherical covariances with vanishing vari-
ance. The key distinctions between K-Means and GMM are concisely presented in
Table 13.2. This comparison highlights their fundamental differences in assignment
methods, covariance structures, and cluster weighting approaches.

13.3.4 Connection with Deep Neural Networks

To connect the Gaussian Mixture Model (GMM) with deep neural networks, we re-
formulate it in exponential form, which simplifies interpretation and integration. This
representation expresses the GMM's components using linear and quadratic terms,
making the model's structure more transparent. By aligning the GMM with the ex-
ponential family, we enable seamless compatibility with neural network frameworks.
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Table 13.2: Comparison of K-Means and GMM.

Aspect K-Means GMM

Assignments Hard (rie € {0,1}) | Soft (posterior probabilities)
Covariance Implicitly a?l General Xy

Cluster Shape | Spherical Elliptical

Optimization Lloyd's algorithm Expectation-Maximization (EM)

Assuming diagonal covariance matrices, Ly = cIlag(Z% ..... Zid), the component k
of the Gaussian Mixture Model (GMM) can be expressed in the following form:

1 1 _
N (x[pie, Zi) = W exp (Z(X - le)TZk1(X - H/<)) (13.69)
Expanding the quadratic term:

d d
z Hii z u i

= eXp ( (lezi [ — E ) ( ki =+ log 2}12/([)) ) . (1370)
i=1 i ki i=1

kl

Then, we express each Gaussian component in exponential form:
N (x|pe, £p) = exp (wk T(x) — A(wk)), (13.71)

where wy = exponential parameters for component k, T(x) =[1,x1, ..., Xd, x12 ..... xczj]T
(sufficient statistics), A(Wk) log-partition function for component k.
Now, match to exp(wk T(x) — Alwy)):

d d
wi T(x) = wio - 1+ Z WiiXi + Z W/((d+[)X[2 (13.72)

Hence, the wy parameters for each component

1. Bias term (1):

(‘“ + log(Zqul))
Zki

2. Linear terms (x;):

3. Quadratic terms (x?):
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4. Log-partition function:
Alwi) = —wio

The GMM can be written:
K
p(x) = Z exp (WZ T(x) — Alwg) + log ¢k | - (13.73)
k=1

It is possible to recover the original parameters from wy ror each component k:

1

 2Wid+) |

Wi

Lki = . I = i=1,.. . .d

2Wi(d-+i)
The mixture weights ¢, remain unchanged (they are not part of wy).
In the context of multiclass classification, the predicted class C is the one that
maximizes the posterior probability:

N

C = argmax P(C = i|x) = arg max p(x|C =1i)P(C =i

argmax log(p(x|C = i)) + log(P(C = i
g max log(p(x] )) + log(P( ) (1374)
K

arg max log( > exp (wlTk T'(x) — Alwik) + log cik |) + by,
[
k=1

where the i is the class index and b; = log(P(C = i)) may be considered as a bias
term for each class.

Following Equation 13.74, we visualize the Gaussian Mixture Naive Bayes Classifier
with its single hidden layer structure in Figure 13.6. This contrasts fundamentally
with deep neural networks (see Chapter 8), which utilize multiple hidden layers to
enable hierarchical feature extraction. While The GMM classifier offers computa-
tional efficiency through its shallow architecture, DNNs achieve greater modeling
flexibility by composing learned representations across layers. The depth advan-
tage allows DNNSs to capture complex nonlinear patterns that often yield superior
accuracy, albeit requiring more training data and computational resources. This
trade-off positions our single-layer probabilistic model as an interpretable baseline
against deeper, more expressive alternatives.

13.4 Sequential Modeling using Hidden Markov Models

Historically, speech recognition systems have frequently utilized Hidden Markov
Models (HMMs) to process input speech signals, which are structured as sequences
of frames, as outlined in Chapter 3. HMMs are well-suited for modeling the tempo-
ral structure of speech data. Their flexibility makes them essential for translating
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(&)
Wiad i1}k

Figure 13.6: The Gaussian Mixture Naive Bayes Classifier operates in a comparable
way to a neural network architecture. The architecture features a single hidden
layer with exponential activations, where each class's log prior probability serves
as the bias component. Unlike standard neural networks with d-dimensional inputs,
our feature vector incorporates both raw features and their squared terms, resulting
in twice the dimensionality (2d).

spoken input into text. This section provides a summary of HMMs, emphasizing their
role in speech recognition. Gaining insight into how they operate in this setting
helps us recognize their value in handling audio signals. Therefore, we examine
HMMs through the lens of speech recognition to demonstrate their real-world use-
fulness.

Automatic speech recognition systems, also known as speech-to-text systems, are
the core technology for man-machine interface. These systems aim to find the most
likely word sequence given acoustic observations collected from a speech signal.
Using statistical methods [52] speech recognition can be defined as a problem of
choosing a word sequence W with the maximum a posterior (MAP) criterion given a
time sequence of speech frames T or acoustic observations associated an utterance
X=(x1,%x2,...,X7) € R™D where D is the dimensionality of the acoustic vector:

~

W = arg max P(WIX) (13.75)
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Using Bayes's rule, Equation 13.75 can be written as

PX|W)P(W)
p(X) (13.76)
o< p(X|W)P(W)

P(W|X) =

where p(X|W) is the likelthood of the acoustic observations given by an acoustic
model and P(W) is the likelihood of the hypothesized word sequence given by a
language model (see Chapter 11).

A Hidden Markov Model is a stochastic finite state machine [5]. An example of
an HMM with left-to-right transition topology, which is used to model a phone
in an acoustic model, is shown in figure 13.7. This model has one entry state,
three emitting states, and one exit state. The left-to-right topology imposes prior
information, where speech production is sequential in time.

Figure 13.7: A typical Hidden Markov Model for a phone.

For every observation at time t, a jump from the current state i to some new state
J is allowed with a transition probability:

ay = Plsey1 = jlst = i) (13.77)

where Z;V aj = 1, N is the number of states in the HMM model. An acoustic feature
vector x; may be generated, with an output probability density function b;(x;), which
is associated with state j. A mixture of Gaussian distributions is typically used to
model the output distribution for each state,

M
bj(xt) = Z ijN(Xt; Hjm, ij) (1378)

m=1
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where M is the number of mixture components, c;; is the component weight and
M o .

> m Cim=1. tjm and L, are the component specific mean vector and covariance
matrix respectively. If the acoustic features are statistically independent, then diag-
onal covariance matrices are used to compute the likelihood of a Gaussian model,

D 2

1 (Xtd —H ‘mc/)
N(xe; tim, Zim) = — exp——— (13.79)

s (20)0; 202
d=1 imd imd

where gj;,4 is the variance element of the Gaussian component m for dimension d.
An HMM can be written in terms of a set of parameters A,

N = {Cl[j, ij, l—ljlﬂv ij} (1380)

HMM model estimation is based on two assumptions that lead to a tractable infer-
ence when computing the likelthood p(X|M) of the observation sequence, X, given a
model M. Although the HMM is successful as an acoustic model because of these
assumptions, they are also its main limitations. The first assumption is the Markov
assumption, which approximates, or factorizes, the probability of the hidden state

sequence S =s1,s2,...,s7 given a model M by a first order Markov chain:
T T
P(SIM) = [ | Plsils1) = [ | ases. (1381)
t=1 t=1

The second assumption is the conditional independence assumption, where the prob-
ability of an observation sequence, X, given a state sequence, S and a model M is
given by

T T
p(X|S, M) = [ pxils) = [ ]bs(x:). (1382)
t=1 t=1

Since the state sequence is hidden, the total probability or likelihood of the acoustic
observations p(X|M) is expressed as a sum over all possible state sequences:

pIXIM) = 5 p(X|S, M)P(SIM), (13.83)
S

which can be efficiently computed using a dynamic programming algorithm given
the factorizations in Equation 13.81 and Equation 13.82. The summation over all
possible state sequences in Equation 13.83 can be approximated by a maximum
operation to find the best state sequence S

A

S = arg max p(X|S, M)P(S|IM) (13.84)
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which is known as the Viterbi path.

This gives the best alignment of acoustic

observations with the states of an HMM. The Viterbt algorithm (i.e. Algorithm 13.2)is
a dynamic programming approach used to find the most likely sequence of hidden
states S in a Hidden Markov Model (HMM) given an observation sequence X and
model parameters M.

Algorithm 13.2 Viterbi Algorithm for Left-to-Right HMM

Require: Observation sequence X = (x1, . ..

Require: HMM M = (A, B with:

Ensure: Most likely state sequence S = (s7.--.

1

9:
10:
1
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

2
3
4
5:
6
7
8

- Non-emitting start state sg
- Non-emitting end state sn41

- Left-to-right transitions (a;; = 0 for j < i)

Initialization:

for all emitting states i do
01(1) « -bi(x1)
(i) < so

end for

- Forward Pass:
fort« 2to T do

for all emitting states j do
Ot(j) < max{0r—1(i) - aij]- bj(x¢)
Urlj) < argmax6,1(0) - ay]
end for
end for
Termination:
P* = maxj[07()) - 6jsy,]
s7 < argmax;[07(j) - djsy 4]
Backtracking:
S —[s7]
fort « 7 —1 cJownto 1 do
s g (90)
S [s"]+S
end for
return é

VXT)

13.4.1 Generative Parameter Estimation

Parameters of HMMs can be estimated using the maximum likelihood estimate

(MLE) framework. For R training observations {X1, Xy, ...

Xr, oo, XR} with cor-
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responding transcriptions {w;}, the MLE objective function is given by

R

Fue(N) = ) log pa(X[M,) (1385)
r=1

where M,,, is the composite model corresponding to the reference word sequence
Wp.

The parameters can be estimated using iterative Baum-Welch algorithm, also known
as the forward-backward algorithm [19]. The Baum-Welch algorithm is a special
case of the Expectation-Maximization (EM) algorithm, which is an efficient iterative
procedure to perform MLE in the presence of hidden variables [53]. The inference
of an HMM is based on computing the forward and backward probabilities. The
forward probabilities (see Algorithm 13.3) can be computed recursively:

N—1
ai(t) = plxt, ..., xe, st = JIM) = (Za, t—1 alj)b/(xt) (13.86)
i=2

with initial conditions a1(1) = 1 and a;(1) = a4;b;(x1) for 1 < j < N and a final
condition an(T) = Zf\:; a(T)ain.
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Algorithm 13.3 Forward Algorithm for HMM Probability Computation

Require: Observation sequence X = (x1, ..., XT1)
Require: HMM M = (A, B) with:

- Non-emitting start state s
- Non-emitting end state sy
- N total states (including non-emitting states)

Ensure: Total observation probability P(X| M)

1:

J NN
L I el =

Initialization:
(1) « 1 > Start state probability
for j«— 2to N—1do > Emitting states
aj(1) « a1j - bj(x1)
end for
Recursive Computation:
for t < 2to T do
for j«— 2to N—1do > For each emitting state
aj(t) — (NS et — 1) - aij) - bjlx)
end for

- end for

Termination:

an(T) < ZLA:; o(T) - ain > End state probability
pXIM) «— an(T) > Total observation probability
return p(X| M)

Similarly, the backward probabilities can be computed see Algorithm 13.4:

N—=1

Bj(t) = /J(Xt+1 ,,,,, XT|Sp = j,M) = Z C’jibj(xt—H)Bi(t + 1) (1387)
i=2

with initial conditions Bi(T) = a;n for 1 < i < N and a final condition (1) =

> 1 anbj(xa)Bj(1).
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Algorithm 13.4 Backward Algorithm for HMM
Require: Observation sequence X = (x1, ..., X7)
Require: HMM M = (A, B, &) with:
- Non-emitting start state s
- Non-emitting end state sy
- N total states (including non-emitting states)
Ensure: Backward probabilities 5;(t) for all states and times
1: Initialization:

2. for i<~ 2to N—1do > Emitting states
3 Bi(T) « ain > Transition to end state
4: end for

50 Bi(T) « 1 > Start state at time T
6: Bn(T) <1 > End state at time T
7: Recursive Computation:

8 for t < 7 — 1 downto 1 do

o: for j < 1to N do > All states
10: Bilt) — Y15 aji - bulxen) - Bilt + 1)

11 end for

12: end for

13: Final Computation:

14 Bi(1) — 35" a1y bjlor) - By(1)

15: return > All backward probabilities

To describe transitions between state i at time ¢ and state j at time t+ 1, we define:

C{[(f) . Cl[j . bj(Xt+1) : Bj(t =P 1)
PX | M) '

Sij(t) = P(se = i, Se41 = J | X M) = (13.88)
where a;; is the transition probability from state i to j and b;(x¢11) is the observation
likelihood in state j at time t + 1. The transition matrix A = [a;;] is updated by
estimating the expected number of transitions from state i to j over the expected
number of transitions from state i to any state:

N Z Elj
aij =
Zt 1 vilt
In addition, the frame-state alignment probability y;, denoting the probability of

being in state j at some time t can be written in terms of the forward probability
aj(t) and the backward probability 5;(t):

(13.89)

p(X,s; = jIM)  a;(t)B;(t)

V) = Ploe = JXM) = == o ™ = XM

(13.90)
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where

PIXIM) = an(T) = Bi(1) (13.91)

and a component specific alignment probability can be derived:

Cim bjm(xt)

o) (13.92)

Yim(t) = P(s¢ = j,m¢ = m|X; M) = y(t)

h h

where the m'" component is associated with the ;" state.
Consequently, the accumulators of the sufficient statistics Cjn(1) = vjm, Cjm(X), and

G (X?) are calculated as follows:

R T,
Cim(1) = > > ¥nlt) (13.93)
r=1 t=1
R T,
CimX) = ) ) Vimlthx (13.94)
r=1 t=1
R T
Cin(X?) = > > ViulOX (13.95)
r=1 t=1

Hence, the Baum-Welch re-estimation formulae for the mean and covariance of state
J and component m of an HMM are given by

ij(/l)
Cim = ——— 13.96
! chjmm) ( )
ij(x)
- 13.97
Hy ij“) ( )
. X2
T = ) (13.98)

—Him
Cm(1) 1

The transition probabilities between states are also estimated by calculating the
forward and backward probabilities.

Generative training of HMM models leads to models that may be useful for gener-
ating speech, which is useful for speech synthesis. Using Bayes rule as in Equa-
tlon 13.75, these generative models can be used for speech recognition. Although
HMM models should be trained to discriminate between speech classes, it is not
uncommon that generative training is the basic training method in speech recogni-
tion. This is related to the basic fact that generative training of HMM models is fast
and efficient because:

e The Maximization step of the EM algorithm for Gaussian models inherits the
closed form of Gaussian’s mean and variance estimation from the data. This
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attractive property may be the main reason behind the widespread of HMM
models.

e Maximum likelihood generative training accumulates statistics from the correct
class only (i.e. it does not use out-of-class data for discrimination). This leads
to a fast training for speech recognition, where the data is split according
to classes and trained independently. However, this advantage is a common
property of generative training.

e Controlling the number of Gaussian mixtures usually leads to coarse genera-
tive modeling, which is usually very effective for modeling the spectral infor-
mation related to discrimination. Modeling the fine structure of the spectrum
may lead to poor discrimination.

HMMs trained by a generative training procedure maximize the likelihood between
the data and the underlying distributions. However, if the true underlying distri-
bution that generated the data is an HMM, given sufficient data, the Bayes clas-
sification based on the HMM models, will minimize the probability of classifica-
tion/recognition error [54]. Practically, the decision boundaries constructed after the
generative training are not optimal and generative HMMSs are not optimal models
for speech recognition applications. One way to address this problem within the
HMM framework is to utilize the parameters efficiently to improve the discrimination
between speech classes via discriminative training for HMM models [55, 56].

13.4.2 Discriminative Parameter Estimation

HMM models trained using the EM algorithm are very effective for coarse genera-
tion of data. Unfortunately, generative training does not address the classification
problem, where the objective is to discriminate between the classes and hence to
reduce the misclassification error. To address this problem, the Gaussians of an
HMM can be rotated and shifted in the feature space to increase the discrimination
between classes via a discriminative training procedure.

The Conditional Maximum Likelthood (CML) criterion, defined by Equation 13.99,
aims to maximize the log of posterior probability of the correct word sequence given
the observations,
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™M)=

}—CML(/\) = lOC_J P/\(MWF|X,«)

r=1

pPAX M, ) P(w;)
2w PAX M) P(W)

I
M=

log (13.99)

=1

Log (X MJ™) — Log pa (X[ M)

™M)=

~
~

r=1

where M, is a composite model corresponding to the word sequence w and P(w)
is the probability of this sequence as determined by a language model. This dis-
criminative training aims to maximize a term related to the probability of the correct
models (known as the numerator) pa(X,|M"™™), which is identical to the ML ob-
jective function, and simultaneously minimize a term related to all incorrect models
probabilities (known as the denominator term) pa (X, M%) = 5 o pa(X, | My )P(W).
> u PAXA My )P(W), which is the summation over all possible word sequences W
allowed in the task, is computationally expensive for LVCSR systems. As a result,
pA(X,|M9") is an approximation to the denominator term, which is computed by
N-best lists [57] or lattices [58, 59] generated from a decoding pass based on MLE
trained models.

Extended Baum-Welch (EBW) algorithm is the state-of-the-art discriminative train-
ing algorithm that maximize the CML criterion for HMMs.? It was introduced for
discriminative training for discrete distributions in [63]. Using a discrete approxi-
mation to the Gaussian distribution [64], it was shown that the mean of a particular
dimension of the Gaussian for state j, mixture component m, p;, and the corre-
sponding variance, o7, (assuming diagonal covariance matrices) can be reestimated

im
by
C'.“”“(X) — Cden(x) + D,Ujm

jm jm
fiip = (13.100)
Jjm yj|j”L7|m N ngll7e7|1 +D
Chum(x 2y _ oden y2 +D 2 + g2
(A7-2 _ jm ( ) jm( ) (ij jm) (13.101)

jm yj|_1nL?|m _A yjc_|ne7n +D

In these equations, D is a smoothing constant that controls the degree of devia-
tion of the new parameters with respect to the old parameters. The superscripts
num and den refer to the model corresponding to the correct word sequence, and
the recognition model for all word sequences, respectively. Figure 13.8 shows the

For numerical optimization based methods see [60, 61]. Given an appropriate setting for learning
parameters and smoothing terms, the EBW and gradient ascent algorithms can be equivalent [62].
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Figure 13.8: Two class classification problem. (a) decision boundary is constructed
with EM generative training (b) decision boundary is constructed by EBW discrim-
tnative training.

decision boundary for a simple two class classification problem, where the Gaus-
sians are shifted and rotated to improve the discrimination between classes. This
may explain the basic idea behind the EBW update for Gaussian models. It may
be important to mention that Gaussian models estimated by discriminative training
are not generative models. They are simply activation functions that have the same
functional form of a Gaussian generative model and the same probabilistic con-
straint (Le. [ f(x|y, D)dx = 1). Similarly, HMM models trained using discriminative
procedures are not generative models or distributions.

Setting the optimal value for D is the subject of extensive research and it is usually
set per-Gaussian level, D;, given the formula

min den
Djm = max{2D,", Evjy" }, (13.102)
where /}775” is a necessary value to ensure positive variances and £ is a global

constant set to 1 or 2 [65]. It has been shown that there is a value of D, which proves
the convergence of the algorithm [66] and [67]. Using the reverse Jensen inequality
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for e-family distributions [68] a closed form expression for D;;,, was derived and the
heuristic in Equation 13.102 was justified [69] The discriminative training of HMM
models is usually initialized by ML generative training. For historical reasons,
CML discriminative training for HMMSs is known as Maximum Mutual Information
Estimation (MMIE) in speech recognition domain. The two criteria lead to the
same results because the language model parameters are not optimized during the
training.

Discriminative training based on the CML objective function does not directly mea-
sure the expected WER criterion. Instead, the Overall Risk Criterion Estimation
(ORCE) [70] directly minimizes the expected word or phone error rates by refining
the model parameters based on a measure of risk related to recognition error. The
update equations of the parameters for ORCE was shown to be very similar to the
EBW update equations described above for CML [71]. Minimum Phone Error (MPE)
criterion may be considered as a particular realization of ORCE and it is given by

R
Fupe(N) =) > PaMy X AW, w,) (13.103)

r=1 w

where A(w, w;) is the raw phone transcription accuracy of the sentence w, given the
reference sentence w;. It has been reported that ORCE based on MPE criterion gives
a small improvement over ORCE based on Minimum Word Error (MWE) criterion
[72, 73] Alternatively, the Minimum Classification Error (MCE) criterion [74] may be
used to update the parameters of HMMs [75, 76, 77, 78]. Some discriminative criteria
have been compared in a unified framework for some tasks [79, 80]. To match the
training and decoding criteria, ORCE based criteria can also be used for decoding
tasks since they directly minimize the expected word error rate [81, 82].
Recognition accuracy can be significantly increased by increasing the number of
hidden states in the HMM. We refer to this process as augmenting the state space,
which aims to increase the capacity of observation distributions. This is usually done
by using context-dependent HMM models like tri-phone, quad-phone, or penta-
phones, which use a window of left and right neighboring phones. The process
of augmenting the state space increases dramatically the number of parameters,
which need to be robustly estimated given the limited amount of training data and
unseen context. Parameter tying allows acoustically similar units to share the same
parameters. Extensive research has been done on clustering the augmented state
space based on tied, context-dependent phonetic units to reduce model complexity
given limited training data [83, 84, 85, 86].
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13.5 Hybrid NN/HMM models

In hybrid NN/HMM speech recognition systems [87], Neural Networks (NN) models
are used as flexible discriminant classifiers to estimate a scaled likelihood. In
particular, the emission probability score is given by

) .
bi(x¢) = //\P(Z)Xt) (13.104)
J
where Pa(sj|x¢) is the posterior probability of a phonetic state estimated by a NN
estimator [88] and P(s;) is estimated from the labeled data. In addition to discrimi-
native training, if the posterior probability Pa(s;|x;) is sensitive to acoustic context,
b;(x¢) score may help to overcome conditional independence assumption and improve
the overall recognition performance without changing the basic HMM framework.






So clearly we don't actually care
about training error, we don't really
care about making accurate
predictions on the training set, or at
a least that's not the ultimate goal.
The ultimate goal is how well it
makes — generalization — how well
it makes predictions on examples
that we haven't seen before.

— Andrew Ng

This chapter discusses various techniques to enhance a model's ability to generalize
to new data. Methods like regularization, cross-validation, and dropout are high-
lighted for reducing overfitting. Additionally, techniques such as batch normalization
and layer normalization are explored to improve training stability and performance.
These approaches help models maintain accuracy on unseen data while preventing
them from fitting noise in the training set. By employing these methods, the chapter
shows how to build more robust models. Each technique is explained in terms of
its contribution to better generalization.

141 Model Complexity

Model complexity refers to the capacity of a machine learning model to capture
patterns in data, which typically increases with the number of parameters or the
flexibility of the model. A simple model, like a linear regression with only a few
parameters, is considered low in complexity. In contrast, more complex models,
such as deep neural networks or high-degree polynomial regressions, can capture
intricate relationships due to their flexibility and a large number of parameters.
While increasing model complexity allows the model to better fit the training data,
it also increases the risk of overfitting, which may hinder the model’s ability to
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generalize to new, unseen data. Thus, finding the right level of complexity is crucial
for building models that perform well on both training and test sets.

Underfitting occurs when a model is too simple and fails to capture the underlying
structure or patterns in the data. This typically happens when the model has too
few parameters or is not complex enough to accommodate the true relationships
within the dataset. In this case, the model produces high errors on both the training
and testing datasets because it cannot adequately describe the data, leading to
poor performance. An underfitting model is characterized by a large bias, where it
assumes that the relationship between input and output is overly simplistic, resulting
in missed nuances or variations that the model should be able to capture.
Overfitting happens when a model becomes too complex and starts to learn not only
the patterns in the training data but also the noise and minor fluctuations that are
irrelevant to the true underlying relationships. In this situation, the model fits the
training data almost perfectly, resulting in very low training error, but it struggles
to generalize to new data, leading to higher test errors. Overfitting is common in
models with too many parameters or in cases where the model is overly sensitive
to the specifics of the training dataset (i.e. high variance where a model learns not
only the underlying patterns in the training data but also the noise and random
fluctuations.). The key issue with overfitting is that while the model appears to
perform well during training, it fails to maintain this performance when applied to
unseen examples because it has essentially ‘'memorized’ the training set rather than
learning a generalizable pattern.

Figure 14.1 illustrates the phenomena of underfitting and overfitting. It visually
demonstrates how these issues affect model performance in relation to complexity.
To avoid both underfitting and overfitting, it's crucial to find an optimal balance of
model complexity. A well-balanced model should be complex enough to capture
the important patterns in the data but not so complex that it starts modeling noise.
Techniques like cross-validation, regularization (such as Ridge or Lasso) are often
used to control the complexity of models and ensure they generalize well. This
involves testing the model's performance on both training and validation datasets to
detect overfitting and underfitting issues and adjust the model accordingly. The goal
is to select a model with sufficient complexity to accurately capture the relationships
in the data while ensuring it performs well on unseen data, achieving a good trade-
off between bias and variance.
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Polynomial Regression Fits (Degrees 1, 4, 20) Training and Testing Errors vs Polynomial Degree
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Figure 14.1: There are two side-by-side plots: one illustrating polynomial regres-
sion fits for degrees 1, 4, and 20, and the other displaying the corresponding train-
ing and testing errors. In the first plot, degree 1 represents underfitting, where the
model is too simple (low complexity) and fails to capture the underlying pattern,
leading to high error on both training and testing data. The degree 4 model demon-
strates an appropriate balance between complexity and fit, capturing the data’s
pattern well without overfitting. The degree 20 model, however, shows overfitting,
where the high complexity allows the model to fit noise in the training data, pro-
ducing a very complex curve. In the second plot, the training error decreases as
the model's complexity increases, but the testing error initially decreases and then
increases for higher degrees, showing poor generalization in the overfitting case.
This behavior emphasizes that a model that is either too simple or too complex can
result in poor predictive performance.

Mathematically, assume we have a dataset with input features x and a correspond-
ing output Y that we want to predict. The true relationship between x and Y can
be represented as:

Y =f(x)+ e (14.1)

where f(x) is the true underlying function that maps input x to the output Y and e
is the noise term, representing the irreducible error in our observations, has a mean
of zero E[e] = 0 and Var(e) = o°.

Now, if we take the expected value of Y:

E[Y] = E[f(x) + €] = f(x) + E[e] = f(x)

This shows that the expected output Y is equal to the true function f(x).
When we evaluate a model f(x) that attempts to predict Y, we can express the mean
squared error (MSE) for a linear regression problem as:
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MSE = E[(Y — F(x))?]
Substituting Y = f(x) 4+ € into the MSE gives us:

MSE = E[((f(x) + €) — F(x))?]

Expanding this expression, we have:

MSE = E[(f(x) + € — 7(x))*]
Using the identity (a + b)? = a® + 2ab + b?, we get:

MSE = E[(f(x) — f(x))’] + E[e?] + 2E[(f(x) — F(x))€]

Evaluating the Terms

1. First Term:
E[(7(x) = 7(x)*] = E[(1(x) — BIF(x)] + E[F(x)] - <>)2]
= E[(f(x x))?] + E[(E[F(x)] — F(x))*] + 2E[(f(x) — E[F (<)) ELF (x)] — 7(x))]
— f(x)? +2f E[f X)] + E[f (x)] +\/a [F(x)] + 2E[(F(x) — E[F (x))(E[F(x)] — F(x))]
= (F(x) = E[f(x))” + Var[f(x)] + 2E[(f(x) — E[f () (B[ (x)] — 7(x))]
= Bias|f(x)]* + Var[f (x)] + 2E[(f(x)E[f (x) ] )T (x) — E[T ()P + E[F ()] (x)]
= Blas[?‘(x)]z+\/a|[f(x)}+2f JE[F(x)] — 2f (x)E[F (x)] — 2E[F(x)]? 4 2E[f (x)]
— Bias|f(x)]’ 4 Var[f(x)] +
— Bias|f(x)]* + Var[f(x)],
(14.2)

where BLaS[IA[ ) = (f(x) — E[f(x))? and Var[f(x)] = E[E[f(x)] — f(x))’] =
E[(F(x) — E[f(x))?].

2. Second Term: The expected value of the squared noise is:
E[e?] = o?

3. Third Term: The covariance term E[(f(x) — f(x))e] is zero, assuming the noise
is independent of the model's predictions:

E[(F(x) — f(x))e] = 0
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Putting it all together, we have:

MSE = Bias|f(x)]* + Var{f(x)] + o? (14.3)

Thus, the irreducible noise error, represented by o2 is the part of the total error
that cannot be reduced by improving the model. This derivation highlights the role
of noise in the context of expected mean squared error in a predictive model.

14.2 Regqularization

This technique combats overfitting by adding a penalty term to the model's loss func-
tion, discouraging overly complex models and promoting simpler and more general-
ized representations. Techniques like LO, L1, and L2 regularization help to control
model complexity and prevent overfitting.

14.2.1 LO Reqularization

LO regularization directly influences the number of features or weights that remain
active, forcing many weights to be exactly zero. Unlike L1 or L2 reqularization,
which provide smooth, differentiable loss functions, LO regularization is inherently
‘non-differentiable” because it operates based on counting non-zero elements, not
their magnitudes.

Because of this non-differentiability, standard gradient-based optimization tech-
niques, such as Stochastic Gradient Descent (SGD), are not applicable. Instead,
finding an optimal solution for LO regularization involves combinatorial optimiza-
tion, where the goal is to search through all possible combinations of which weights
should be kept or pruned.

In mathematical terms, the objective is to solve an optimization problem like:

n
Ereg(w) = E(w) +A)  1(w; # 0)

i=1
Here, we have to evaluate many possible subsets of non-zero weights, which leads to
an exponential search space. The number of possible subsets of features or weights
is 2" for n weights, making this problem NP-hard. Each possible subset of weights
needs to be evaluated in terms of how it contributes to minimizing the overall loss
function.
Consider a simple model with 3 weights w = [wy, w2, w3]. The LO reqularization
problem involves determining whether each of these weights should be included in
the model (non-zero) or pruned (set to zero). The possible combinations of non-zero
weights are:
[\/\/1, w7, Wg], [W1, w7, 0], [W1 , O, Wg], [O, w7, Wg], [W1 , O, 0], [O, w7, 0], [O, O, Wg}, [0, O, O}
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This example shows how the number of possible configurations grows exponentially
with the number of weights. For each of these combinations, the model needs to
evaluate the loss function, making the optimization process extremely computation-
ally intensive.

In conclusion, LO reqularization requires combinatorial optimization because the
problem involves selecting the best combination of non-zero weights from an expo-
nentially large set of possibilities.

14.2.2 L1 Reqularization (Lasso)

L1 regularization encourages sparsity in the weight vector by penalizing the sum of
the absolute values of the weights. The modified loss function with L1 regularization
is given by:

Ereg(W) = E(W) +A)  |wi|
i=1

To compute the gradient of the L1 reqularizer, we need to differentiate the absolute
value term. The gradient of |w;| with respect to w; is:

1 if W[>0
‘W,”Z —1 if w; <0

undefined itfw; =0

d

d Wi

Thus, the gradient of the L1 regularization term is:

o, (Aw1) = A - sign(w;)

Where sign(w;) is the sign function that outputs 1, —1, or 0 based on whether w; is

positive, negative, or zero, respectlvelg.

14.2.3 L2 Regqularization (Ridge)

L2 regularization adds a penalty proportional to the square of the weights. The
regularized loss function for L2 is given by:

)\ n 5
Ereg(w) = E(W) + 5 ; W,

The gradient of the L2 reqularization term with respect to w; is:

(/Z\IZ]WIZ) = Aw;
i=1

d
aW[
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Thus, the gradient of L2 reqularization is proportional to the weight value itself. A
summary of Regularizers

Regularization Effect on Weights Feature Selection | Sparsity
LO Limits number of non-zero weights Yes Yes
L1 (Lasso) Drives weights to zero Yes Yes
L2 (Ridge) Shrinks weights but keeps all features No No

In conclusion, L1, L2, and LO regularizations each provide a method to control model
complexity, with different trade-offs in promoting sparsity and computational stabil-
ity. L1 encourages sparsity, L2 shrinks weights while retaining all features, and L0
selects a minimal subset of features.

14.2.4 Label Smoothing

Label smoothing is a regularization technique used in classification tasks to improve
model generalization by modifying the target labels. Instead of using hard labels
(Os and 1s), label smoothing assigns a small probability to incorrect classes, effec-
tively softening the target distribution. By mathematically redistributing the label's
probability mass, it enhances the model’s ability to generalize to unseen data.
Let's explore the mathematics of label smoothing in detail, focusing on the formula-
tion, the loss function, and the implications for training. In a multiclass classification
problem with C classes, we represent the true label using a one-hot encoded vector
t:

t=[0,1,0,...,0]

Label smoothing modifies this one-hot vector to create a smoothed target vector t:

- €
= (1- 1
t=( e)t+C,

where € is the smoothing parameter (e.g., 0.1) and 1 is a vector of ones of size C.
For Example, Assuming C = 3 (three classes) and € = 0.1:

t=1[0,1,0],
and after applying label smoothing:

t=(1-0.1)0,1,0]+ %{1, 1,1] = [0+ 0.033,0.9,0 + 0.033] = [0.033, 0.9, 0.033]

The categorical cross-entropy loss for a predicted probability distribution y is de-
fined as:
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E(t,y) Ztllog (yi),

and when we use the smoothed labels, thts loss function becomes:

i log(y)

\\I\/Im

Substituting the smoothed label 7

i(1—ea + =) log(yd

i=1
This can be separated into two terms:

m
G
o

||
'l\/|°

(1— €)tilog(ys) — Z = log(y:)

The first term resembles the standard cross—entropg loss but is scaled by (1 — ¢),
which reduces the contribution of the true class. The second term adds a penalty for
all classes, distributing some loss across incorrect classes, effectively encouraging
the model to assign non-zero probabilities to them. During training, if the model
becomes overly confident in predicting the distribution, the first term will approach
zero while the second term will rise significantly. Thus, label smoothing effectively
acts as a reqularizer, helping to prevent the model from making overly confident
predictions. In other words, the second term minimizes the entropy between a
uniform distribution over classes and the predicted distribution, encouraging less
confident predictions. By softening the target labels, label smoothing reduces the
model's confidence in its predictions, which can help prevent overfitting to noise in
the training data.

Models trained with label smoothing often produce more calibrated probability dis-
tributions, meaning their predicted probabilities better reflect the true likelihoods
of the classes. In addition, the modified loss function results in smoother gradients,
which can lead to more stable training dynamics, especially in complex models like
deep neural networks. This technique has been shown to be effective in improving
the performance of models on various tasks.

14.3 Dropout Regularization

Dropout is a regularization technique used to improve the generalization perfor-
mance of deep neural networks by preventing overfitting [90]. It works by randomly
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‘dropping out” units (neurons) from the neural network during training. This means
that, at each training step, a subset of neurons is ignored, and the network is forced
to adapt without relying on specific neurons. As a result, the network becomes more
robust and generalizes better to unseen data. Dropout introduces noise into the
training process, which can be viewed as a form of reqgularization, as highlighted in
Bishop's work [91] This noise, introduced by randomly deactivating neurons, forces
the network to generalize better by preventing it from relying too heavily on specific
neurons. This mechanism of adding noise helps avoid overfitting, making dropout
an implicit regularizer for neural networks.

In a fully connected neural network, each neuron in a given layer is connected to
every neuron in the next layer as shown in Figure 14.2. During training, dropout
randomly disables a fraction p (referred to as the dropout rate) of neurons in each
layer with probability p, which effectively means these neurons do not participate
in forward or backward propagation during that iteration. This is typically done by
multiplying the activations of these neurons by 0.

Mathematically, if h; is the output of neuron i in some layer during training, the
dropout step can be described as:

hi =ri - h;, (14.4)

where r; is a random binary variable (1 with probability 1—p and 0 with probability
p) and h; is the original activation of the neuron before dropotit.

During training, the network learns not to rely on any specific neuron but instead to
distribute the learned representations across many neurons. This reduces overfitting
because, during inference (when dropout is not applied), the model can perform well
on unseen data by leveraging all neurons.

During the inference phase (after training), dropout is no longer applied. To account
for the fact that more neurons are active during inference than during training, the
weights of the neurons are scaled by a factor of 1—p. This ensures that the overall
activations remain approximately the same as during tratning. If w; is the weight of
neuron i, then during inference, we use:

hy=(1—p)-h (14.5)

This compensates for the fact that neurons were randomly dropped during training.
Dropout helps improve generalization by:

e Reducing Overfitting By randomly dropping units, dropout prevents the net-
work from over-relying on specific neurons, forcing it to learn more robust
features that generalize well to unseen data.

e Implicit Ensemble Method Dropout can be viewed as training a large number of
different networks (by randomly dropping neurons) and averaging them, which
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acts as a form of model ensembling. This boosts the network’s robustness.

e Improving Neuron Independence: By ensuring that no neuron can fully dom-
inate the decision-making process, dropout promotes independence between
neurons. This leads to learning representations that are less correlated and
more useful for generalization.

Consider a toy neural network with three input neurons and two hidden layers,
each with four neurons. Applying dropout with p = 0.5 means that, at each training
iteration, approximately half of the neurons in each hidden layer will be randomly
dropped. This leads to various subnetworks being trained at each iteration, pre-
venting over-reliance on particular pathways.

The overall impact of dropout can be mathematically summarized by modifying the
loss function with dropout applied:

Edropout = Er[E(W, /')] (14.6)

Where r represents the random dropout masks applied to the neurons. The ex-
pectation over all possible dropout masks ensures that the network learns a more
generalized solution. In conclusion, dropout is an effective reqularization technique
that enhances a model's ability to generalize by preventing overfitting, effectively
acting as an implicit ensemble of networks.

(a) Standard feedforward neural network (b) After applying dropout

Figure 14.2: Dropout regularization: On the left, a conventional feedforward neural
network with two hidden layers is shown. On the right, a reduced version of the
same network is depicted, where dropout has been applied. The crossed-out neurons
indicate the units that have been removed during training. The illustration closely
resembles the one shown in the referenced paper [90].
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14.4 Normalization

The Batch Normalization (BatchNorm) and Layer Normalization (LayerNorm) also
introduce slight variations in the input values, which can be seen as introducing
noise during training. This added noise acts as a form of reqularization [91], helping
to improve the model's generalization ability by preventing overfitting in a manner
similar to other reqularization techniques. They already discussed in Chapter 11.

14.41 Batch Normalization

Batch Normalization is applied during training to normalize the activations of each
layer across a mini-batch of data. It does this by adjusting the mean and variance of
the activations, which helps in stabilizing and speeding up training. Mathematically,
BatchNorm normalizes a batch of data as:

~ Xi — Hbatch

R = e (14.7)

Obatch

where ppatch is the mean of the batch and opaten is the standard deviation of the
batch.

It then introduces learnable parameters, y (scale) and S (shift), allowing the network
to maintain the capacity to learn features that are beneficial to the task at hand.
Batch normalization helps smooth the optimization surface, making the training
process more stable and allowing the model to converge more quickly. In addition,
BatchNorm introduces some noise to the network due to the small fluctuations
between mini-batches. This acts as a reqularizer, similar to dropout, reducing the
chances of overfitting. Moreover, by normalizing the activations, BatchNorm reduces
the issue of vanishing or exploding gradients, which can help deeper networks
generalize better by stabilizing the training dynamics.

14.4.2 Layer Normalization

Layer Normalization normalizes across the features of a single sample rather than
across the batch [92] It's more commonly used in recurrent neural networks (RNNs)
and Transformers because it doesn't depend on batch size, making it more suited
for sequential data.

The normalized output for LayerNorm is:

5%[ _ Xi — ,Ulage|" (148)

Olayer

where fiayer is the mean of the activations across all the features in a layer and
Olayer is the standard deviation of the activations across all the features in a layer.
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Since LayerNorm doesn’t depend on the batch size, it provides consistent normal-
ization regardless of how data is split into batches. This consistency can improve
generalization, especially in settings like natural language processing (NLP) where
input sequence lengths vary. For sequential data like in RNNs and Transformers,
LayerNorm is better suited than BatchNorm as it ensures stable gradients through-
out the sequence. This stability helps the network generalize better across various
sequence lengths. The difference between Layer Normalization and Batch Normal-
ization is illustrated in Figure 14.3.

Features
Features

rm——-

- '
Bacth#0 Bacth#1 -
— Ll

\4

Samples Samples

Layer Normalization Batch Normalization

Figure 14.3: Layer Normalization and batch Normalization both stabilize and speed
up neural network training, but they differ in how they normalize inputs. Layer
Normalization normalizes across the feature dimension for each individual sample,
making it more suited for tasks where batch size is small or variable. In contrast,
Batch Normalization normalizes across the batch dimension, meaning it computes
the mean and variance for each feature across a mini-batch, which introduces de-
pendencies between samples in the batch.

In conclusion, BatchNorm tends to improve generalization more effectively in con-
volutional neural networks (CNNs) and feed-forward networks by reducing internal
covariate shifts' and helping the network learn more robust features. LayerNorm,
on the other hand, is effective in NLP models, such as Transformers, where data
dependencies are sequential or vary in size. It improves generalization by ensuring
smoother and more stable training dynamics.

"Internal Covariate Shift refers to the phenomenon where the distribution of inputs to each layer of
a neural network changes during training, due to updates in the parameters of the preceding layers.
This shift happens because as weights are updated in each training step, the output of a layer (which
is the input to the next layer) changes its distribution. This shift can slow down training since the
model has to constantly adapt to the changing input distribution [93].
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14.4.3 Root Mean Square Normalization

Root Mean Square Layer Normalization (RMSNorm) is often used as a replacement
for LayerNorm (Layer Normalization) because it simplifies the normalization process
and reduces computational overhead [94].

RMSNorm simplifies this process by skipping the mean subtraction and using only
the root mean square (RMS) of the input. We first compute the Root Mean Square:

(14.9)

where d is the dimension of x vector. Then, the input is normalized by dividing each
element by the RMS value:
o Xi
Ri= = 14.10
" RMS(x) ( )
Similar to LayerNorm, a learnable scale parameter y is applied to the normalized

values:
Yi = VX (14.11)

RMSNorm is computationally more efficient than LayerNorm since it skips the cal-
culation of the mean and variance, reducing the number of operations involved in
normalization. In addition, by focusing only on the magnitude (via the RMS), RM-
SNorm simplifies the regularization process, potentially improving training dynamics
in certain models (e.g., Transformers). Moreover, RMSNorm introduces less variance
in the gradients during training, which can help improve stability in some cases.

The gradient stability of RMSNorm with respect to LayerNorm can be explained as
follows: LayerNorm normalizes across the features of a single training example by
subtracting the mean and dividing by the standard deviation. Given an input vector
X = (x1,X2, ..., Xq), the normalized output X; for each element x; is computed as:

Xi — U

Vol +e

_ 1 d . . 2 1 d 2
where = 5 ) ;_;x is the mean of the input vector, 0° = 53 " 1(x; — p)* is the
variance, and € is a small constant added for numerical stability.

The gradient of 1 with respect to x; is:

A

Xi =

(14.12)

oy 1
J
and the gradient of Variance o*:
2 91 d G — 2 2
90" _ 952 i “)szfm (14.14)

0x; 0x; d
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Using the quotient rule, the gradient of &; with respect to x; involves both the mean
and variance:

%_ ! 5 — Xi—H (9702_ ! % (14.15)
an B \/02+€ Y (02+€)3/2 an \/024_60)(/ .

Substitute the gradients of 1 and o?:

% 1 Gumulgmp)

oxi Vol+e ! n(o?+e)Pl ol +e (14.16)
B 1 5. 1T (i —u)x;—p) '
= — | g A A o s

n n(e2+e

Vol +e

This expression has additional complexity because of the terms involving the input
mean p and variance ¢?, introducing correlations between the input dimensions.
On the other hand, the gradient of RMS with respect to Xj s

IRMS () X;

dx;  n-RMS(x) (14.17)

Using the quotient rule, the gradient of the normalized output, %;, with respect to x;
is:

ok 0J Xi ] 5 Xi JRMS(x) (14.18)
dx;  0x; \RMS(x)] — RMS(x) RMS? (x) ox; '
Substituting the gradient of RMS:
% _ 1 5 B X[Xj
dx; RMS(x) " . RMS3
g (x) n S7(x) (14.19)

. 1 (5 Xl‘Xj )
- RMS(x) \ Y n RMS?(x)

The gradient stability is clearer in RMSNorm where only the RMS is used for
normalization, which simplifies the gradient. The absence of the mean subtraction
results in less interaction between the input elements, thus reducing the variance in
the gradients. This can lead to more stable training, especially in deeper networks.
In LayerNorm, the presence of the mean p/ and variance g introduces more complex
interactions between the elements of the input, leading to higher gradient variance,
especially in deep networks. The gradient contains terms involving both the input
mean and the variance.
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Fold 1 Fold 2 Fold 3 Fold4 Fold5
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. " - - " Performance Average
Split 3 | Train | | Train | l Test | | Train | l Train }—) for split 3 —7 Performance
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Figure 14.4: In K-fold cross-validation, the dataset is divided into k equal parts
or folds. The model is trained on k-1 folds while the remaining fold is used for
evaluation. This process is repeated k times, each time using a different fold as the
validation set. Finally, the performance scores from all iterations are averaged to
obtain the overall model performance.

14.5 Cross-Validation

Cross-Validation is a powerful technique used to estimate a model's performance on
unseen data. It involves splitting the available data into multiple subsets, training the
model on a portion of the data, and evaluating its performance on the remaining test
set. Cross-validation provides a more robust estimation of the model's generalization
ability, helping in model selection and hyperparameter tuning.

A common approach of cross-validation is of K-fold cross-validation which is a statis-
tical technique used to assess a model's generalization performance by partitioning
the dataset into several subsets (or folds) and then performing multiple training
and validation rounds. This approach provides a more robust estimate of model
performance than a simple train-test split, especially when the dataset is small or
imbalanced. Here's a detailed description, followed by the mathematical basis for
why it improves generalization.

The K-fold cross-validation is implemented as follows (see Figure 14.4):

1. Partitioning The dataset D = {(x;, y;)}!_, is divided into K approximately
equal-sized folds: D, D, ..., Tx.

2. Training and Validation: For each fold k (where k =1,2,...,K):
- Use fold D, as the validation set.
- Use the remaining K — 1 folds as the training set.
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3. Evaluation: Compute the performance (e.g., accuracy, loss) for each validation
fold D, resulting in K performance scores.

4. Average Performance: The overall performance of the model is estimated by
averaging the K validation scores:

K
1
Performancea,g = e Z Performancey.
k=1

This approach allows each data point to serve as part of both training and validation
sets, providing a more comprehensive measure of model performance.

Let /:?k(w) be the empirical risk (e.g., the validation error) on fold k of the K-fold
cross-validation. Then, the overall K-fold cross-validation estimate /i’c\/(w) is:

K
A 1 A
Reviw) = > Rew). (14.20)
k=1
The variance of /i’c\/(w) is given by:
1 K
Var(Rey(w)) = Var e ; Rk(w)) : (14.21)

By the properties of variance, if we assume the risks Ri(w) have a common variance
0’ and pairwise covariances pa’ (where p is the correlation coefficient between
different folds), the variance can be expanded as:

K
Var(Rey(w)) = /%2 > Var(Ri(w)) + /;—2 Z Cov(Ri(w), Rj(w)). (14.22)
k=1 i+
This becomes: : KK — 1)
e _ 2 — 2
Var(Rev(w)) = 20tz P (14.23)
Simplifying, we get:
2
Var(Rev(w)) = %(1 4 (K —1)p). (14.24)
If p = 0 (folds are independent), this reduces to %Z showing the ideal variance

reduction. But in practice, folds are not independent, so p typically has a positive
value, and the actual reduction in variance is less than ‘,’—5

In summary, K-fold cross-validation enhances generalization by reducing the vari-
ability in model performance estimates by averaging over multiple folds (i.e. variance
reduction) and providing a comprehensive assessment of model performance by en-
suring each data point is used in both training and validation, allowing the model
to generalize better to unseen data (i.e. more robust estimation or bias reduction).
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14.6  Data Augmentation

Original Image

Figure 14.5: Image augmentation involves applying a series of random transforma-
tions to the original image, such as horizontal flipping, rotation, zooming, translation,
and contrast adjustment.

Data augmentation is a technique used to improve generalization in machine learn-
ing models by artificially increasing the diversity of the training data. Mathemati-
cally, it can be viewed as a way to reduce overfitting by expanding the dataset to
better approximate the true data distribution.

Consider a simple linear model f(x; w) = w' x with a mean squared error (MSE) loss.
For a dataset augmented with Gaussian noise, where X; = x; + € and € ~ N(0, 02/),
the loss over the augmented data can be written as:

N
Eaug(w) = % Y Eepo0) [(g[ —w!(x + e))z] : (14.25)
i=1

Expanding this expression:

N
Eaug(w) = Z( —wix)? + o'ww) (14.26)

This augmented loss now includes a regularization term o’w’w, which prevents

large weights and promotes generalization (see Section 14.2.3).
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In summary, data augmentation enhances generalization by introducing an implicit
regularization term in the loss function, reducing the variance of the model's predic-
tions without adding significant bias, and more closely approximating the true data
distribution, thus lowering the risk of overfitting. A sample of data augmentation for
an image is shown in Figure 14.5.

14.7 Ensemble Methods

Parallel ensembles

Model 1
- Model 2
* Combiner P Ensgmple
o prediction
Model N
Training set 1 Model 1
- Training set 2 Model 2 Ensemble

Model

Training set N I—)I Model N

Sequential ensembles

Figure 14.6: Parallel methods train models independently and simultaneously, while
sequential methods build each new model based on the errors of the previous model
in a step-by-step process.



14.7. ENSEMBLE METHODS 235

Ensemble methods improve generalization by combining predictions from multiple
models to reduce variance, bias, or both, leading to a more robust predictor. The
key intuition is that aggregating the outputs of several models minimizes the risk
of overfitting to particular patterns in a dataset, as each model provides a unique
perspective. As shown in Figure 14.6, Ensemble methods can be classified into
two types: parallel methods (e.g. bagging), which train models independently and
simultaneously, and sequential methods (e.g. boosting), which build each new model
incrementally by addressing the errors of the previous model.

In bagging (i.e. Bootstrap Aggregating), several models are trained independently
on different bootstrap samples’ of the training data, and their outputs are averaged
or voted upon to produce a final prediction. Majority voting aggregates predictions
from multiple models and selects the most common prediction as the final output.
Hence, this approach enhances predictive accuracy by leveraging the strengths of
multiple models.

Suppose we have M independent models fi(x), f2(x), ..., fp(x) trained on boot-
strapped samples of the dataset, each predicting §; for an input x. For regression,
the ensemble prediction is the mean:

M
N 1
Yensemble = M Z fm(X)~ (14.27)

m=1

Assuming each model has variance o?

the ensemble prediction is given by:

and they are uncorrelated, the variance of

var(gensemble) = lUZ‘ (1428)
M

This reduction in variance improves generalization, as the ensemble is less sensitive
to fluctuations in any single training set compared to individual models.
Boosting reduces bias by training a sequence of models where each model attempts
to correct errors made by the previous ones. This can be particularly beneficial
for weak models, such as a simple linear regression model that can be weak for
complex relationships. Let the final model F(x) be a weighted sum of M models

f(x), f2(x), ..., fum(x):

M
F(X) = Z amfm(x), (1429)

m=1
where a, are weights that depend on the model's performance in predicting the
data. For each iteration m, the model f,(x) is trained to minimize the loss on the

2Bootstrap samples are randomly drawn subsets of a dataset created by sampling with replacement.
When generating bhootstrap samples, each original data point has a chance to be selected multiple
times, or not at all, in a single sample.
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residuals from the previous model. This iterative correction reduces bias at each
step. Hence, boosting aims to achieve a lower overall error, improving generalization
on unseen data. By combining models, ensemble methods reduce variance (bagging)
or bias (boosting), thereby improving generalization. Each model's prediction errors
complement each other, resulting in a more stable and accurate ensemble model.
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