
DRAFTMachine Learning: From Scratch to MasteryYasser Hifny

DRAFT

DRAFTMachine Learning: From
Scratch to MasteryYasser Hifny

DRAFT
Copyright © Yasser Hifny 2025.

DRAFT

DRAFTA
�
mÌ
�
'A
�
�

�
ÉÔ�

�
« �ð é�

��
<Ë @ ú

�
Í@

�
A
�
«
�
X

�	á
��ÜØ� B

�
�
ñ
��
¯

�	á
�
�

�
k

�

@
�	á
�
Ó
�
ð

�	á�
Ò�
Ê�
�
��Ü

�
Ï @

�	áÓ� ú

	
æ
�

��	
K @

�

�
ÈA
��
¯
�
ð

33
�
éK

�
B@

�
IÊ�

	
¯
�
èPñ�

And who is better in speech than one whoinvites to Allah and does righteousness andsays, "Indeed, I am of the Muslims."

DRAFTDedication.To my father and mother

DRAFTviiPreface
Data science is a rapidly growing field that combines statistical analysis, machinelearning, and computational thinking to extract meaningful insights from data. Asmore and more data becomes available in our increasingly digital world, effectivelyharnessing and analyzing this data is becoming an essential skill for students andprofessionals alike.This book, "Machine Learning: From Scratch to Mastery," is designed to providereaders with a solid foundation in the core concepts and techniques of machinelearning. This book assumes readers have a basic familiarity with advanced math-ematics concepts like calculus and linear algebra, as well as some experience withPython programming. By building on these foundations, the book is able to divedeeper into the core machine learning techniques without having to cover the ab-solute basics from the ground up.One of the unique aspects of this book is the way it was developed. It was developedusing AI-powered tools, including OpenAI’s ChatGPT, Microsoft’s Copilot throughSkype, and DeepSeek’s advanced language model. These powerful tools were usedto generate Python scripts for the numerous examples and figures throughout thebook, as well as to assist in the writing of mathematical equations and conceptualexplanations.This innovative approach dramatically reduced the time required to write the book,allowing the author to focus on curating the content and ensuring a cohesive andaccessible learning experience for the reader. By leveraging the capabilities of theseAI-powered tools, the author was able to create a comprehensive and up-to-dateresource that covers the essential topics in machine learning, from linear regressionand optimization to advanced algorithms such as transformers.Whether you are an undergraduate student taking your first machine learning courseor a postgraduate student looking to expand your skills, "Machine Learning: FromScratch to Mastery" is an invaluable resource that will guide you through the fun-damental concepts and practical applications of this exciting field. With the help ofChatGPT, Copilot, and DeepSeek, the author has created a truly unique and acces-sible learning experience that will empower you to become a confident and capabledata scientist.

DRAFTContents

1 Introduction 1

1.1 Fundamental Mathematical Elements 21.2 Information Theory for Machine Learning 31.2.1 Variational Lower Bound (ELBO) . 5

2 Optimization 8

2.1 Convex Functions . 92.2 Derivative . 102.3 Gradient Descent . 122.3.1 Examples . 152.4 Gradient Descent using Taylor’s Series 172.5 Gradient Descent Limitations . 182.5.1 Adaptive learning Rate . 202.6 Assignment . 22

3 Input Representation 23

3.1 Tabular Data Representation . 243.2 Text Representation . 263.2.1 Word Tokenization . 263.2.2 Character Tokenization . 27

viii

DRAFTCONTENTS ix

3.2.3 WordPiece Tokenization . 273.3 Speech Representation . 293.4 Image Representation . 383.4.1 Video Representation . 40

4 Linear Regression Networks 41

4.1 The model . 424.2 Learning problem . 434.2.1 Numerical solution . 464.3 Example . 464.4 Assignment . 48

5 Binary Classification Networks 49

5.1 The model . 505.2 Learning Problem . 515.3 Classification Decision . 555.4 Evaluation . 565.4.1 F1 Curve and threshold tuning . 605.5 An Example . 625.6 Assignment . 64

6 Multiclass Classification Networks 65

6.1 The model . 666.2 Learning problem . 68

DRAFTCONTENTS x

6.3 Classification decision . 706.4 Example . 726.5 Assignment . 73

7 Multilabel Classification Networks 74

7.1 Model . 757.2 Learning problem . 777.3 Evaluation . 777.3.1 Decision Boundary Threshold Tuning . 797.3.2 Macro F1-Score . 807.4 Example . 807.5 Assignment . 82

8 Deep Neural Networks 83

8.1 Motivation . 848.2 Model . 868.3 Learning via Backpropagation . 888.3.1 Forward Propagation . 888.3.2 Backward Propagation . 888.4 Example . 928.5 Assignment . 94

9 Convolutional Networks 95

9.1 Motivation . 96

DRAFTCONTENTS xi

9.2 Convolutions . 989.2.1 Definition . 989.2.2 Examples of the 1D cross-correlation operations 999.2.3 Examples of the 2D cross-correlation operations 1019.2.4 Examples of the 3D cross-correlation operations 1039.3 Resolution control (subsampling) . 1059.4 Model and learning problem . 1069.4.1 Convolutional layers . 1069.4.2 Pooling layers . 1099.5 An Example . 1099.6 Assignments . 111

10 Recurrent Neural Networks 112

10.1 Model . 11310.2 Learning Problem . 11610.3 The Difficulty of Training Simple RNN 11810.4 Long Short-Term Memory Networks 12210.4.1 Vanishing/Exploding Gradients with LSTMs 12310.5 Independently Recurrent Neural Network 12410.6 Bidirectional Recurrent Neural Networks 12510.7 An Example . 12710.8 Assignments . 130

11 Attention Networks 131

11.1 Scaled Dot-Product Similarity Measure 132

DRAFTCONTENTS xii

11.2 Multi-head Self-Attention Networks 13411.2.1 Numerical Example for Self-Attention . 13811.2.2 Masked Self-Attention . 13911.3 Stacking Self-Attention Layers . 14111.3.1 Position-wise Feed-Forward Network (FFN) 14311.4 The Transformer Model . 14411.4.1 N-gram Language Modeling . 14411.4.2 Neural Language Modeling . 14811.4.3 Conditional Language Modeling . 15311.5 Training and Inference for Encoder-Decoder Framework. 16311.5.1 Cross-Entropy Loss for Transformer Models 16311.5.2 Inference for Transformer Models . 16411.6 Assignment . 166

12 State Space Models 169

12.1 Discrete-Time State Space Model 17012.1.1 Training SSMs . 17212.2 HiPPO Initialization for S4 Models 17312.3 Selective State Space (S6) Models 17312.3.1 Bidirectional Mamba models . 17812.4 Improvements based on Mamba 178

13 Probablistic Learning 181

13.1 Naïve Bayes Multiclass Classification 183

DRAFTCONTENTS xiii

13.2 Gaussian Models . 18513.2.1 Properties of a Gaussian model . 18613.2.2 Multivariate Gaussian models . 18813.2.3 Learning Problem . 19013.2.4 Gaussian Naïve Bayes Classifier . 19213.3 Gaussian Mixture Models . 19313.3.1 Learning Problem . 19413.3.2 Gaussian Mixture Naïve Bayes Classifier 19913.3.3 Connection with K-means . 19913.3.4 Connection with Deep Neural Networks 20013.4 Sequential Modeling using Hidden Markov Models 20213.4.1 Generative Parameter Estimation . 20613.4.2 Discriminative Parameter Estimation . 21113.5 Hybrid NN/HMM models . 215

14 Generalization 216

14.1 Model Complexity . 21714.2 Regularization . 22114.2.1 L0 Regularization . 22114.2.2 L1 Regularization (Lasso) . 22214.2.3 L2 Regularization (Ridge) . 22214.2.4 Label Smoothing . 22314.3 Dropout Regularization . 22414.4 Normalization . 22714.4.1 Batch Normalization . 22714.4.2 Layer Normalization . 22714.4.3 Root Mean Square Normalization . 229

DRAFTCONTENTS xiv

14.5 Cross-Validation . 23114.6 Data Augmentation . 23314.7 Ensemble Methods . 234

DRAFT
1

DRAFT1.1. FUNDAMENTAL MATHEMATICAL ELEMENTS 2

1. Introduction

The future of computing is not justabout faster machines, but smarterones. — Claude Shannon
We begin by establishing links between related fields, information theory, and prob-abilistic modeling. These connections are crucial for understanding various machinelearning techniques. A strong foundation in these concepts will help in explainingadvanced models. One such example is diffusion models, which rely on probabilisticprinciples. Understanding these relationships is essential for grasping their math-ematical formulation.
1.1 Fundamental Mathematical Elements
In this section, we present and define fundamental mathematical elements, includingscalars, vectors, matrices, and tensors. Each of these mathematical elements is anabstraction that helps describe physical quantities and relationships.

1. Scalar: A scalar is a single number, often representing a quantity that hasmagnitude but no direction. Scalars are used to measure quantities such astemperature, mass, or time.- Example: Temperature at a point, T = 25 °C.- Mathematical Notation: Scalars are typically denoted by lowercase or up-percase letters, e.g., a, b, c.
2. Vector: A vector is an ordered list of numbers that represents a quantity withboth magnitude and direction. Vectors are often visualized as arrows in space,with the length representing the magnitude and the direction representing itsorientation.

DRAFT1.2. INFORMATION THEORY FOR MACHINE LEARNING 3

- Example: Velocity in 3D space, v = (vx , vy, vz).- Mathematical Notation: A vector is usually represented as a bold letter orwith an arrow above, e.g., v.
v = vxvyvz


3. Matrix: A matrix is a rectangular array of numbers arranged in rows andcolumns. Matrices are used to represent linear transformations, systems oflinear equations, and more.- Example: A 2x2 matrix representing a linear transformation in 2D space.

A = [a11 a12a21 a22
]

- Mathematical Notation: Matrices are typically represented by uppercasebold letters, e.g., A, B.
4. Tensor: A tensor is a more general mathematical object that can be thoughtof as a multi-dimensional array of numbers. Tensors extend scalars, vectors,and matrices to higher dimensions and are used extensively in physics, engi-neering, and machine learning.- Example: A rank-3 tensor in 3D space.

T = [tijk] , i, j, k = 1, 2, 3
- Mathematical Notation: Tensors are usually denoted with calligraphic let-ters or bold, uppercase letters, e.g., T , T.- A scalar can be seen as a tensor of rank 0.- A vector is a tensor of rank 1.- A matrix is a tensor of rank 2.- Higher-rank tensors (rank 3 and above) represent more complex relation-ships. For example, a rank-3 tensor can be used to represent the stress orstrain in a material in physics.

1.2 Information Theory for Machine Learning
Certain Probablistic modeling techniques incorporate concepts from information the-ory. Hence, basic elements of information theory are introduced (for details see

DRAFT1.2. INFORMATION THEORY FOR MACHINE LEARNING 4

[1, 2, 3]). In his landmark paper [4], Shannon introduced a quantitative measureof information known as entropy. For a discrete random variable s takes values
s1, s2, . . . , sn with the corresponding probabilities P(s1), P(s2), . . . , P(sn), the en-tropy is defined as S(s) ≜ − n∑

i=1 P(si) logP(si) (1.1)
The entropy is a measure of the average uncertainty of a random variable and− logP(si) is the amount of information gained by observing the event si. Events siwith low probabilities produce more information than the events with large probabil-ities. Hence, rare events produce more information or surprise than frequent eventsand this is the basic idea behind compression algorithms. The entropy has largevalues when all si have same probability. The entropy is measured in nats whenthe natural logarithm is used in Equation 1.1 to measure the information conveyedby a random variable or in bits when base 2 logarithm is used.Similarly, the conditional entropy is the uncertainty in a random variable s givenanother random variable o and it is given by

S(s|o) ≜ −∑
s,o P(s, o) logP(s|o) (1.2)

The average mutual information is defined as the difference between S(s) and S(s|o)as shown in Equation 1.3. It is a measure of average reduction in uncertainly about safter observing o. The mutual information is symmetric I(s; o) = I(o; s) and is alwaysnonnegative.
I(s; o) ≜ S(s)− S(s|o)

= −∑
s,o P(s, o) log P(s, o)P(s)P(o) (1.3)

Relative entropy or the Kullback-Leibler (KL) divergence between two probabilitydistributions P and Q of a discrete random variable is given by
DKL(P||Q) ≜∑

s
P(s) log P(s)Q(s) (1.4)

DKL(P||Q) is the information loss when Q is used to approximate P . KL divergenceis nonsymmetric (i.e. KL(P||Q) ̸= KL(Q||P)) and DKL(P||Q) ≥ 0. When the distri-butions P and Q are identical, DKL(P||Q) is exactly zero. The mutual informationis the KL divergence between the joint distribution P(s, o) and the product of P(o)and P(s) distributions.In probablistic machine learning, Q = P̃Λ is an hypothesized model that has freeparameters Λ. The goal of the training process is to minimize the information loss

DRAFT1.2. INFORMATION THEORY FOR MACHINE LEARNING 5

in terms of KL divergence between the training data distribution1 P̃ and its hypoth-esized model P̃Λ (i.e. DKL(P̃||P̃Λ) is minimum). Hence, Λ∗ is given byΛ∗ = argminΛ {DKL(P̃||P̃Λ)}
= argminΛ {∑s

P̃(s) log P̃(s)−∑
s
P̃(s) log P̃Λ(s)}

= argminΛ {S(P̃)−∑
s
P̃(s) log P̃Λ(s)}

∝ arg minΛ {−∑s
P̃(s) log P̃Λ(s)} = argminΛ {S(P̃, P̃Λ)}

(1.5)

where S(P̃, P̃Λ) is defined as the cross entropy between two distribution P̃ andP̃Λ and the term S(P̃) is ignored because it is independent of Λ. As a result, theminimization of S(P̃, P̃Λ) and DKL(P̃||P̃Λ) are equivalent. The minimization of thecross entropy between a data model and an hypothesized model is equivalent tothe maximization of the log likelihood objective function, which is given by
Λ∗ = argmaxΛ L(P̃, P̃Λ) = argmaxΛ

∑
s
P̃(s) log P̃Λ(s)

= argmaxΛ −S(P̃, P̃Λ) (1.6)
Hence, minimization of KL objective function between a data model and an hypoth-esized model is related the maximum likelihood estimation (MLE) between the twomodels. Similarly, maximizing the mutual information can be re-cast as minimiz-ing the cross entropy between a data model and an hypothesized model [5]. Wewill examine the cross-entropy loss function, a key training objective used in bi-nary classification (Chapter 5), multiclass classification (Chapter 6), and multilabelclassification (Chapter 7) scenarios.
1.2.1 Variational Lower Bound (ELBO)The ELBO (Evidence Lower Bound)2 is another objective function we introduce. Itis widely employed in statistical learning to approximate intractable probabilities,particularly in variational autoencoders (VAEs) [6] and diffusion models [7, 8, 9].Given a latent variable model with observed data x and latent variable Z , themarginal likelihood is:

p(x) = ∫ p(x, Z)dZ (1.7)
1A true distribution P that generates a data set is usually not known and is replaced with anempirical distribution P̃ observed from the stochastic process.2https://xyang35.github.io/2017/04/14/variational-lower-bound/

DRAFT1.2. INFORMATION THEORY FOR MACHINE LEARNING 6

Figure 1.1: Jensen’s inequality for a convex function. The plot shows how the secantline of a convex function lies above the curve between any two points, with annota-tions highlighting the inequality at the midpoint f (x1+x22) < f (x1)+f (x2)2 .
Since direct computation of p(x) is often intractable, we introduce an approximateposterior distribution q(Z). Applying Jensen’s inequality f (E[x]) ≤ E [f (x)] for theconcave log function (see Figure 1.1), we start with:

logp(x) = log ∫Z p(x, Z)
= log ∫Z p(x, Z)q(Z)q(Z)
= log(Eq [p(x, Z)q(Z)

])
≥ Eq

[log p(x, Z)q(Z)
]

= Eq [logp(x, Z)] + H [Z],

(1.8)

where H [Z] = −Eq[logq(Z)] is the Shannon entropy. Hence,L(q) = Eq [logp(x, Z)] + H [Z] (1.9)It is evident that L(q) serves as a lower bound on the log-likelihood of the observeddata. Consequently, when aiming to maximize the marginal likelihood, we canequivalently focus on optimizing this variational lower bound L(q).

DRAFT1.2. INFORMATION THEORY FOR MACHINE LEARNING 7

The Kullback-Leibler divergence can alternatively used to drive the ELBO. The KLdivergence between q(Z) and p(Z|x) is:
KL [q(Z)||p(Z|x)] = ∫Z q(Z) log q(Z)p(Z|x)= −∫Z q(Z) log p(Z|x)q(Z)

= −(∫Z q(Z) log p(x, Z)q(Z) −
∫
Z q(Z) logp(x))

= −∫Z q(Z) log p(x, Z)q(Z) + logp(x) ∫Z q(Z)
= −L(q) + logp(x)

(1.10)

Rearrange the terms:
L(q) = logp(x)− KL [q(Z)||p(Z|x)] (1.11)

Since KL divergence is always non-negative, we conclude:
logp(Z) ≥ L(q) (1.12)which confirms that ELBO provides a lower bound on the log-marginal likelihood.Hence, maximizing ELBO indirectly maximizes the data likelihood p(x). Moreover,the KL divergence ensures that the approximate q(Z) is close to p(Z|x).

DRAFT
8

DRAFT2.1. CONVEX FUNCTIONS 9

2. Optimization

I never failed in mathematics.Before I was fifteen I had mastereddifferential and integral calculus.— Albert Einstein
Gradient-based optimization is an essential tool for the field of machine learning.This chapter addresses the basic elements of calculus used to understand gradient-based methods such as gradient descent.
2.1 Convex Functions
A function f (x) is convex if the line segment between any two points on the graph ofthe function lies above or on the graph. Mathematically, for x1, x2 ∈ R and λ ∈ [0, 1]:

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)
To illustrate the formal definition of a convex function, we can create a plot showinga convex function f (x) = x2 and a line segment connecting two points (x1, f (x1)) and(x2, f (x2)) as shown in Figure 2.1. The convexity condition states that the functionvalue at any convex combination of x1 and x2 is less than or equal to the corre-sponding convex combination of f (x1) and f (x2). Examples of convex functions arethe quadratic function f (x) = x2 and the exponential function f (x) = ex .A function f (x) is non-convex if there exists at least one line segment betweentwo points on the graph of the function that lies below the graph. It violates theconvexity condition as shown in Figure 2.2. Examples of non-convex functions arecosine function f (x) = cos(x) and the quartic function with multiple minima f (x) =x4 − 4x2 + 3.

DRAFT2.2. DERIVATIVE 10

Figure 2.1: Illustration of the convex function definition. The blue curve representsf (x) = x2, which is convex. The green dashed line connects the points (x1, f (x1)) and(x2, f (x2)). The purple points represent f (λx1 + (1− λ)x2), which lie below or on thegreen line segment, satisfying the convexity condition.
2.2 Derivative
The derivative in calculus is a way of measuring the rate of change of a function ata certain point. It can also be interpreted as the slope of the line that is tangent tothe function’s curve at that point. The derivative of a function f (x) can be denotedby f ′(x) or df (x)dx , where x is the input variable1. The derivative mathematically canbe defined as follows:

f ′(x) = df (x)dx = limh→0 f (x + h)− f (x)h (2.1)
if the limit exists. A function is not differentiable at a point if it is not continuous atthat point. For example, the function f (x) = |x| is not continuous at x = 0, so it hasno derivative there.

1A partial derivative is a derivative of a function of several variables with respect to one of thosevariables, while keeping the others constant. For example, if f (x1, x2)is a function of x1 and x2 , then thepartial derivative of f with respect to x1 is denoted by ∂f∂x1 and it is obtained by differentiating f withrespect to x1 and treating x2 as a constant. Similarly, the partial derivative of f with respect to x2 isdenoted by ∂f∂x2 and it is obtained by differentiating f with respect to x2 and treating x1 as a constant.Partial derivatives are used to measure the rate of change of a function along a specific direction oraxis

DRAFT2.2. DERIVATIVE 11

Figure 2.2: The plot shows curve with multiple local minima and maxima for thefunction (f (x) = x4 − 4x2 + 3), illustrating non-convexity.
Most machine learning algorithms are formulated as a minimization of a loss orobjective function with respect to certain variables. To find a minimum of a function,there are different methods depending on the type and complexity of the function.Some of the common methods are:• Sketching the function: This method involves plotting the graph of the functionand visually identifying the lowest point on the graph. For example, the one-variable quadratic function has one global minimum2 at x = 1:

f (x) = (x − 1)2 (2.2)
where it is easy to find the minimum by inspecting the plot. However, thismethod is useful for simple functions that can be easily graphed, but it maynot be accurate or feasible for more complicated functions.

• Finding analytical solution: This method involves using calculus to find thederivative of the function and setting it equal to zero. This gives the criticalpoints of the function, where the slope is zero or undefined. Figure 2.4 shows
2The difference between local and global minimum of a function is that a local minimum is thepoint where the function value is smaller than (or equal to) the function values at nearby points, whilea global minimum is the point where the function value is the smallest among all points in the domain.A function can have multiple local minima, but only one global minimum.

DRAFT2.3. GRADIENT DESCENT 12

Figure 2.3: A plot of a simple quadratic function has a global minimum.
graphically why we set the first derivative to zero where the slope at themaximum and minimum is a horizontal line (i.e. the slope is zero).Then, using the second derivative test or the first derivative test, we candetermine which critical points are local minima, local maxima, or neither. Tofind the minimum of the quadratic function in Equation (2.2), we differentiateit with respect to x and set the derivative to zero as follows (i.e. using thepower rule): f ′(x) = 2(x − 1) = 0 (2.3)Hence, the minimum happens at x = 1. In practice, this method for finding theminimum of a function does not scale well with the amount of training datacommonly seen in machine learning problems.

• Using gradient descent method: The gradient descent method is an iterativeoptimization algorithm that is used to find the minimum of a function by movingin the opposite direction of the gradient (or the slope) of the function at eachpoint. This method will be detailed in the next section.
2.3 Gradient Descent
The gradient descent method involves starting from an initial guess and iterativelyupdating it by moving in the opposite direction of the gradient (the vector of partial

DRAFT2.3. GRADIENT DESCENT 13

Figure 2.4: The slope at the maximum and minimum is a horizontal line (i.e. theslope is zero).
derivatives) of the function. The gradient gives the direction of steepest ascent, somoving against it will lead to a descent. The step size is determined by a learningrate parameter that controls how fast or slow the algorithm converges. This methodis useful for finding a local minimum of a function that may not have an analyticalsolution or may be too complex to solve by calculus. However, this method doesnot guarantee finding the global minimum of the function, and it may depend on thechoice of initial guess and learning rate.The gradient descent method works as follows (assuming the function has one vari-able only):1. Start with an initial guess x = x (0) for the parameters of the function that needto be optimized.2. Calculate the gradient of the function with respect to the parameters at thecurrent point g(x) = df (x)dx |x (0) .3. Update the parameters by subtracting a fraction of the gradient from the cur-rent values. The fraction is called the learning rate and it controls how big orsmall the steps are. x (1) = x (0) − ηg(x) (2.4)where η > 0 is the learning rate. When the gradient is positive (ascending),it means that the function is increasing in that direction. Therefore, we move

DRAFT2.3. GRADIENT DESCENT 14

against the gradient direction to find a lower point on the function, aiming toeventually reach a local minimum. Similarly, when the gradient is negative(descending), it means the function is already decreasing in that direction,but we still move against the gradient to continue finding a lower point andapproach the local minimum. This way, we hope to eventually reach a localminimum of the function as well. This behavior is shown in Figure 2.5. In thenext section, we show mathematically why we need to subtract a fraction ofthe gradient from the current values.

Figure 2.5: Function plot with gradient lines (ascending at x = 5 and descendingat x = −3) and arrows pointing towards the minimum.
4. Repeat steps 2 and 3 until the gradient is close to zero or a maximum numberof iterations is reached.

The gradient descent method is widely used in machine learning to train models byminimizing a loss function that measures the difference between the predicted andactual outputs. The gradient descent method can be applied to different types offunctions, such as linear, quadratic, or non-linear functions. There are also differentvariants of the gradient descent method, such as batch gradient descent, stochasticgradient descent, mini-batch gradient descent, and momentum gradient descent, thatdiffer in how they calculate and update the gradients.

DR
AF

T

2.3. GRADIENT DESCENT 15

2.3.1 ExamplesIn this subsection, I will use Python code to illustrate how the gradient descentalgorithm works and how it can be applied to different functions of one variable ortwo variables.The gradient descent algorithm is a method to find the minimum of a function bytaking small steps in the direction of the steepest decrease. To apply this algorithmto the function f (x) = (x − 1)2, we need to first find its derivative, which is g(x) =2(x −1). The algorithm starts with an initial guess for x =3, and computes the valueof g(x) at x = 3. Then it updates x by subtracting an ηg(x) from it. This gives anew value for x that is closer to the minimum of the function. The algorithm repeatsthis process until it converges to a value of x that makes g(x) very close to zero ora maximum number of epochs is reached. This value of x = 1 is the minimum of thequadratic function f (x) = (x − 1)2. The described algorithm can be implemented asa Python code as follows:
1 def grad(x):2 return 2.0 * (x -1.0)34 x = 3.05 eta = 0.0016 epochs = 500007 for i in range(epochs):8 x -= eta * grad(x)910 print(x)Listing 2.1: Python example for finding the minimum of a quadratic function in onevariable.

On the other hand, we can use two different learning rates ηx1, ηx2 for the functionf (x1, x2) = (x1 − 2)2 + 10 ∗ (x2 + 3)2 because the function has different scales andcurvatures along the x1 and x2 directions. If we use a single learning rate for bothvariables (e.g. ηx1 = ηx2 = 0.1), we might encounter a convergence problem. Byusing different learning rates for each variable ηx1 = 0.1 and ηx2 = 0.05, we canadjust the step size according to the shape of the function and find the minimummore efficiently and accurately3. A Python implementation to find the minimum ofthis function is:
1 # Define the function of two variables2 def f(x1 , x2):3 return (x1 - 2) **2 + 10.0 * ((x2 + 3) **2)45 # Define the partial derivatives of the function6 def df_dx1 (x1 , x2):

3You can play with the learning rates to study the convergence properties.

DRAFT2.3. GRADIENT DESCENT 16

7 return 2 * (x1 - 2)89 def df_dx2 (x1 , x2):10 return 20.0 * (x2 + 3)1112 # Define the learning rates for each variable13 eta_x1 = 0.1 # Learning rate for x114 eta_x2 = 0.05 # Learning rate for x21516 # Define the initial values for x1 and x217 x1 = 0.018 x2 = 0.01920 # Define the tolerance for convergence21 epsilon = 0.0000012223 # Define a variable to store the previous value of the function24 prev_f = f(x1 , x2)2526 #Start the gradient descent loop27 steps = 028 while True:29 steps += 130 # Update x1 and x2 using the gradient and the learning rates31 x1 = x1 - eta_x1 * df_dx1 (x1 , x2)32 x2 = x2 - eta_x2 * df_dx2 (x1 , x2)3334 # Compute the current value of the function35 curr_f = f(x1 , x2)3637 #Check if the function value has decreased sufficiently38 if abs(curr_f - prev_f) < epsilon :39 break # Exit the loop4041 # Update the previous value of the function42 prev_f = curr_f4344 #Print the final values of x1 and x2 and the minimum value of the
function45 print("x1 =", x1)46 print("x2 =", x2)47 print("f(x1 , x2) =", curr_f)48 print("steps for convergence =", steps)Listing 2.2: Python example for finding the minimum of a quadratic function in twovariables.

The adaptive learning rate is a technique that adjusts the learning rate dynamicallybased on the progress of the gradient descent algorithm. The idea is to use a largerlearning rate when the function is far from the minimum and a smaller learning

DRAFT2.4. GRADIENT DESCENT USING TAYLOR’S SERIES 17

rate when the function is close to the minimum. This way, we can speed up theconvergence and avoid overshooting or oscillating. One method to implement theadaptive learning rate is to use the Hessian matrix, which is the matrix of second-order partial derivatives of the function. The Hessian matrix captures the curvatureof the function and can be used to scale the gradient vector according to the shapeof the function. By using the inverse of the Hessian matrix as a multiplier forthe gradient vector, we can obtain a more accurate direction and step size foreach iteration of the gradient descent algorithm. The next section will detail thesetechniques.
2.4 Gradient Descent using Taylor’s Series
In mathematics, Taylor’s series can be used to make a first-order approximation toa scalar loss function f (x) around the current point vector x(t) ∈ Rd given the firstderivative of the function at that point:

f (x(t+1)) ≈ f (x(t)) + (x(t+1) − x(t))Tg, (2.5)
where g is the gradient vector at the point x(t). It can be written as well as follows:

f (x(t) + ∆x) ≈ f (x(t)) + ∆xTg, (2.6)where ∆x = x(t+1) − x(t). In order to decrease the loss function f (x(t) + ∆x), the term∆xTg has to be a negative value. Hence,
∆xTg < 0 (2.7)

Let’s consider the cosine of angle between the two vectors ∆xT and g:
cosθ = ∆xTg|∆xT ||g| (2.8)

cosθ lies between −1 and 1 i.e. −1 ≤ cosθ ≤ +1 . Hence,
−|∆xT ||g| ≤ ∆xTg ≤ |∆xT ||g| (2.9)

Now we want the dot product to be as negative as possible (so that loss can be aslow as possible). We can set the dot product to be −|∆xT ||g| where cosθ has to beequal to -1 corresponds to θ = 180o. Therefore,
∆x = −g (2.10)

This result explains why we move in the opposite direction of the gradient as wedescribed in Section 2.3.

DRAFT2.5. GRADIENT DESCENT LIMITATIONS 18

Intuitively, since the first-order approximation is good only for small ∆x, we want tochoose a small η > 0 to make ∆x small in magnitude. η is called the learning rate.Hence, ∆x = −ηg (2.11)
2.5 Gradient Descent Limitations
The gradient of a function at a specific point represents the direction of the steepestdescent of the function at that point. In other words, it points in the direction inwhich the function decreases most rapidly. On the other hand, the contours4 of afunction are curves along which the function has the same value, so there is nochange in the function value as you move along the contour.Since the gradient points in the direction of maximum decrease, it is orthogonal(perpendicular) to the direction along which there is no change in the functionvalue, which is the contour. This is true for any scalar function.One limitation of the gradient descent is the zigzag effect. The zigzag effect occursbecause the gradient at each point points in the direction of the steepest descentwhen moving downhill and may not necessarily point directly toward the minimum.As the algorithm moves along the steepest slope, it overshoots the direction of theminimum, and in the next step, it must correct its course. This leads to a back-and-forth zigzagging pattern as the algorithm iteratively converges to the minimum asshown in Figure 2.6. This zigzag effect slows down the convergence of the algorithm.Zigzag effect of gradient descent does not happen for the loss functions that havecircular contours or equal curvature in all dimensions or directions. For example, afunction like f (x, y) = x2 +y2 has circular contours and does not have zigzag effect.A straight line to the minimum for these functions is followed by gradient descentas shown in Figure 2.7.Hessian-based optimization methods, like Newton’s method or Quasi-Newton meth-ods (such as BFGS and L-BFGS), make use of second-order information to help guidethe optimization process more effectively [10]. They use the Hessian matrix or itsapproximation to adjust the step size and direction, which can reduce the zigzag-ging effect and potentially lead to faster convergence. Using Taylor’s expansion, thesecond-order approximation is given by

f (x) ≈ f (x(t)) + (x− x(t))Tg + 12(x− x(t))TH(x− x(t)), (2.12)
where H is the Hessian matrix at the point x(t). The local Hessian matrix is a

4A contour of a function (e.g. Rosenbrock function) is a curve connecting points with the samefunction value. A contour is defined mathematically as the set of points (x, y) such that f (x, y) = c,where c is a constant.

DRAFT2.5. GRADIENT DESCENT LIMITATIONS 19

Figure 2.6: The zigzag effect of the gradient descent algorithm.
symmetric matrix and is defined by

H ≡ ∂f (x)∂xi∂xj |x(t) (2.13)
H =


∂2f (x)∂x21

∂2f (x)∂x1∂x2 · · ·∂2f (x)∂x2∂x1 ∂2f (x)∂x22 · · ·...
 (2.14)

The basic idea of Newton’s method is to minimize the quadratic approximation ofthe cost function f (x) around the current point x(t). Equation (2.12) can be rewrittenas follows: ∆f (x(t)) = f (x)− f (x(t)) ≈ ∆xTg + 12∆xTH∆x (2.15)Differentiating the above equation with respect ∆x and setting the output to zero toget the minimum:
g + H∆x = 0, (2.16)Hence, the Newton’s update rule is given by∆x = −ηH−1g (2.17)When the matrix H equals to the identity matrix5 (i.e. taking the same step in eachdirection), we reach the gradient descent update rule described in Equation (2.11).

5An identity matrix is a square matrix in which all the elements of the principal diagonal are onesand all other elements are zero.

DRAFT2.5. GRADIENT DESCENT LIMITATIONS 20

Figure 2.7: The zigzag effect of the gradient descent algorithm does not happen forthe functions that have circular contours.
It’s important to note that while Hessian-based methods can help overcome thezigzagging effect, they often come with their own challenges, such as increased com-putational complexity and the need to compute or approximate the Hessian matrix.In practice, these trade-offs need to be considered when selecting an optimizationalgorithm for a particular problem [11].Adaptive learning rate methods overcome the zigzag effect in the gradient descentalgorithm as well. They are addressed in the next subsection.
2.5.1 Adaptive learning RateAdaptive learning rate methods overcome the zigzag effect in gradient descent by ad-justing the learning rate for each parameter during the optimization process. Thesemethods take into account the history of gradients, the magnitude of the gradients,or both, to determine an appropriate learning rate for each parameter. As a result,adaptive learning rate methods can effectively navigate the loss surface and reduceoscillations and zigzagging.Some popular adaptive learning rate methods include:

• Momentum: Momentum can reduce the zigzag problem by accumulating avector that smooths out the gradient updates and aligns them with a consistentdirection. Hence, it converges faster and more reliably than the gradient

DRAFT2.5. GRADIENT DESCENT LIMITATIONS 21

descent [12]. The momentum with gradient descent algorithm updates theparameters x as follows:
m(t) = βm(t−1) + (1− β)g(t) (2.18)

x(t+1) = x(t) − ηm(t) (2.19)
where g(t) is the gradient of the loss function at time step t , m(t) is the vectorthat accumulates the past gradients, β is the momentum coefficient, and η isthe learning rate.• AdaGrad: AdaGrad accumulates the squared gradients for each parameter ina diagonal matrix and uses this information to adapt the learning rate for eachparameter. Parameters with larger accumulated squared gradients have theirlearning rate reduced, while those with smaller accumulated squared gra-dients have their learning rate increased. This makes AdaGrad well-suitedfor problems with sparse gradients or features that occur with varying fre-quency [13]. The AdaGrad algorithm updates the variables x as follows:

v (t) = v (t−1) + g(t).g(t) (2.20)
x(t+1) = x(t) − η√v (t) + ε g(t) (2.21)

where g(t) is the gradient of the loss function at time step t , v (t) is the sum ofthe squares of the gradients up to time step t , η is the learning rate, and ε isa small constant to prevent division by zero• RMSprop: RMSprop is an improvement over Adagrad that uses an exponen-tially decaying average of the squared gradients instead of the cumulativesum. This makes RMSprop more robust to situations where the accumulatedsquared gradients can grow indefinitely, causing the learning rate to shrinktoo much [14]. The RMSprop algorithm updates the variables x as follows:
v (t) = βv (t−1) + (1− β)g(t).g(t) (2.22)

x(t+1) = x(t) − η g(t)√v (t) + ε (2.23)
where g(t) is the gradient of the loss function at time step t , v (t) is the estimateof the second moment of the gradients, β is the decay rate for the moment, ηis the learning rate, and ε is a small constant to prevent division by zero.

DRAFT2.6. ASSIGNMENT 22

• Adam: Adam combines the ideas of RMSprop and momentum-based meth-ods. It computes the first moment (mean) and the second moment (uncenteredvariance) of the gradients, and uses these moments to adapt the learning ratefor each parameter. This helps Adam to navigate the loss surface more effec-tively, reducing zigzagging and achieving faster convergence [15]. The Adamalgorithm updates the variables x as follows:
m(t) = β1m(t−1) + (1− β1)g(t) (2.24)v (t) = β2v (t−1) + (1− β2)g(t).g(t) (2.25)
m̂(t) = m(t)1− βt1 (2.26)
v̂ (t) = v (t)1− βt2 (2.27)

x(t+1) = x(t) − η m̂(t)√v̂ (t) + ε (2.28)
where g(t) is the gradient of the loss function at time step t , m(t) and v (t)are the estimates of the first and second moments of the gradients, m̂(t) andv̂ (t) are the bias-corrected estimates6, β1 and β2 are the decay rates for themoments, η is the learning rate, and ε is a small constant to prevent division byzero. Although the Adam algorithm is the state-of-the-art learning algorithm,the algorithms suffer from worse generalization7 performance than stochasticgradient descent despite their faster training speed [16]. Hence, a practicalrecipe for training is to start with Adam for a few epochs and then switch tothe gradient descent algorithm. In addition, the Adam algorithm accumulatestwo statistics for each variable or parameter during the optimization process.

2.6 Assignment

Using Adam algorithm, find the minimum of the function f (x1, x2) = (x1− 2)2 + 10 ∗(x2 + 3)2.
6The Adam algorithm suffers from a bias problem due to the initialization of the first and secondmoment estimates at zero. This means that the algorithm tends to underestimate the true values ofthese moments at the beginning of the training, leading to inaccurate gradient updates. To overcomethis problem, the Adam algorithm uses a bias correction term that divides each moment estimate bya factor that accounts for the decay rates of the moments. This way, the algorithm can adjust for thebias and converge faster and more reliably.7The generalization is measured using the test set performance.

DRAFT
23

DRAFT3.1. TABULAR DATA REPRESENTATION 24

3. Input Representation

Computer programs usually operateon tables of information. In mostcases these tables are not simplyamorphous masses of numericalvalues, they involve importantstructural relationship between thedata elements.— Donald Ervin Knuth
Most types of data, including tabular data, text, speech, and images, can be formattedfor computer processing. In this chapter, we discuss various methods for representingthese different types of data.
3.1 Tabular Data Representation
Tabular data refers to data that is organized into rows and columns, making it easyto read and analyze. Each row in a table represents a record or an instance, whileeach column represents a specific attribute or feature of the data. This structure iscommon in databases, spreadsheets, and many machine learning applications.In the context of machine learning, particularly with "feedforward neural networks",tabular data is used to train models by feeding structured data into the network. Thetable is often converted into a format suitable for processing by the neural networks,typically by normalizing or encoding categorical variables. The key elements oftabular data are:

1. Rows: Each row represents a single observation or data point. For example,in a dataset of customer information, each row might represent a differentcustomer.
2. Columns: Each column represents a feature or attribute of the data. Forinstance, columns might include customer age, income, and purchase history.

DRAFT3.1. TABULAR DATA REPRESENTATION 25

Table 3.1: Raw customer data.
Customer ID Age Income ($) Gender Purchased (Yes/No)001 25 50000 Male Yes002 32 60000 Female No003 45 75000 Female Yes004 29 55000 Male No005 39 80000 Female Yes

3. Headers: The first row often contains the column names, which describe theattributes of the data.
4. Data Types: Columns can have different data types, such as numerical, cate-gorical, or boolean.
5. Missing Values: Sometimes, data might be missing or incomplete, and han-dling these missing values is a crucial step in preprocessing.

Table 3.1 is an example of a simple table that might be used as input for a feedforwardneural network. This table represents customer data where each row is a customerand each column is a feature of the customer.The input table typically requires preprocessing to transform the data into a nu-merical format suitable for machine learning algorithms. The common preprocessingsteps are:
1. Normalization: Numerical values such as Age and Income are often normalizedto a range (e.g., 0 to 1) to ensure that all features contribute equally to themodel’s training.
2. Encoding Categorical Data: Categorical variables like Gender and Purchasedare typically converted into numerical format. For instance, "Male" might beencoded as 0 and "Female" as 1. Similarly, the Purchased column could beconverted to 1 for "Yes" and 0 for "No".
3. Handling Missing Values: If any values are missing, they need to be filled inor removed. For example, missing Age values could be filled with the averageage or a specific value.

Table 3.2 is the output table after preprocessing. In this preprocessed table, allfeatures are numeric and scaled, making them suitable for different machine learningalgorithms. Each feature is now on a comparable scale, and categorical variableshave been encoded into numerical values.

DRAFT3.2. TEXT REPRESENTATION 26

Table 3.2: Preprocessed customer data.
Customer ID Age

(Normalized)
Income

(Normalized)
Gender

(Male=0, Female=1)
Purchased

(Yes=1, No=0)001 0.25 0.50 0 1002 0.32 0.60 1 0003 0.45 0.75 1 1004 0.29 0.55 0 0005 0.39 0.80 1 1
3.2 Text Representation
Text representation involves converting raw text into numerical data that a machinelearning model can understand. Tokenization is a crucial step in this process, asit breaks down the text into smaller units called tokens. These tokens are thenconverted into numerical representations (embeddings) through an embedding layer.
3.2.1 Word TokenizationWord tokenization splits the text into individual words based on spaces and punc-tuation. Consider the sentence:

"Machine learning is fun!"
The word tokenization result is:

["Machine", "learning", "is", "fun", "!"]
Each word (including punctuation) is treated as a separate token.After tokenization, each word is mapped to a unique numerical vector using anembedding layer. An embedding layer is a matrix1 W ∈ RV×d where V is thesize of the vocabulary (number of unique tokens) and d is the embedding dimension(number of features in each token’s vector). The embedding layer transforms eachtoken ti into its corresponding vector ei using the embedding matrix. If ti correspondsto the index j in the vocabulary, the embedding for ti is the j-th row of the embeddingmatrix. For example, if the embedding dimension is 4, a sample embedding matrixis shown in Table 3.3. Hence, the numerical representation (i.e. embedded text) ofthe given sentence is:

1The matrix can be learned using training data.

DRAFT3.2. TEXT REPRESENTATION 27

Table 3.3: Word Tokens and their corresponding embedding vectors.
Word Token Embedding Vector
"Machine" [0.1, 0.3, 0.5, 0.2]
"learning" [0.4, 0.6, 0.7, 0.1]
"is" [0.9, 0.8, 0.4, 0.3]
"fun" [0.2, 0.1, 0.3, 0.7]
"!" [0.6, 0.4, 0.9, 0.5]
... ...

Embedded Text =


[0.1, 0.3, 0.5, 0.2][0.4, 0.6, 0.7, 0.1][0.9, 0.8, 0.4, 0.3][0.2, 0.1, 0.3, 0.7][0.6, 0.4, 0.9, 0.5]


3.2.2 Character TokenizationCharacter tokenization breaks the text down into individual characters, includingspaces and punctuation. For the same example:"Machine learning is fun!"The character tokenization result is:["M", "a", "c", "h", "i", "n", "e", " ", "l", "e", "a", "r", "n", "i", "n", "g", " ", "i", "s", " ", "f", "u", "n", "!"]Hence, each character, including spaces and punctuation, is treated as a separatetoken. Each character is then mapped to a numerical vector using an embeddinglayer. The vocabulary size is quite limited, being equal to the number of uniquecharacters in the given language. For example, if the embedding dimension is 4, asample embedding matrix is shown in Table 3.4. Hence, the numerical representation(i.e. embedded text) of the given sentence is:

Embedded Text =


[0.2, 0.4, 0.1, 0.8][0.7, 0.2, 0.6, 0.3][0.5, 0.9, 0.2, 0.4]...


3.2.3 WordPiece TokenizationWordPiece tokenization is a subword-based tokenization method used by modelslike BERT [17]. It breaks words into smaller units (subwords) that frequently occur

DRAFT3.2. TEXT REPRESENTATION 28

Table 3.4: The mapping of embeddings for character tokens.
Character Token Embedding Vector

M [0.2, 0.4, 0.1, 0.8]
a [0.7, 0.2, 0.6, 0.3]
c [0.5, 0.9, 0.2, 0.4]
h [0.1, 0.7, 0.3, 0.9]
i [0.8, 0.1, 0.4, 0.5]

... ...

Table 3.5: Subword Tokens and their Embeddings.
Subword Token Embedding Vector

Un [0.1, 0.5, 0.3, 0.2]
##bel [0.4, 0.7, 0.2, 0.6]
##iev [0.3, 0.2, 0.8, 0.9]
##able [0.9, 0.1, 0.4, 0.5]

! [0.6, 0.4, 0.7, 0.1]
... ...

in the text. This is especially useful for handling out-of-vocabulary (OOV) words.For example, the sentence "Unbelievable!"The wordPiece tokenization result is:["Un", "##bel", "##iev", "##able", "!"]Here, "Unbelievable!" is broken down into subwords: "Un", "bel", "iev", "able", with "##"indicating that the subword is part of a larger word. Each subword token is mappedto an embedding vector. For example, if the embedding dimension is 4, a sampleembedding matrix is shown in Table 3.5. Hence, the numerical representation (i.e.embedded text) of the given sentence is:
Embedded Text =


[0.1, 0.5, 0.3, 0.2][0.4, 0.7, 0.2, 0.6][0.3, 0.2, 0.8, 0.9][0.9, 0.1, 0.4, 0.5][0.6, 0.4, 0.7, 0.1]


In short, word tokenization divides text into individual words, with the embeddinglayer transforming each word into a vector. In addition, character tokenization breakstext into individual characters, with the embedding layer converting each character

DRAFT3.3. SPEECH REPRESENTATION 29

into a vector. Moreover, wordpiece tokenization segments words into smaller sub-words, with the embedding layer encoding each subword as a vector. Hence, thesetokenization methods and the embedding layer transform text into numerical valuesthat can be fed into machine learning models.
3.3 Speech Representation
Speech signal processing assumes the speech signal is a piecewise stationary sig-nal. As a result, a pre-processor converts the speech signal into a sequence of speechframes or acoustic observations using short time signal analysis. Typically, theseframes are calculated every 10-20ms from 20-30ms windows of speech. Speechframes of these lengths are short enough that the estimated parameters can beassumed constant within each frame.The perceptually motivated front end processing based on Mel filter bank (MFBANK)features and Mel-Frequency Cepstral Coefficients (MFCCs) [18] are the most widelyused for speech recognition2 and synthesis tasks. They are widely used in speechand audio processing to represent the short-term power spectrum of a sound signal.The output representation is a matrix of dimensions T × d, where T denotes thenumber of frames and d represents the number of features per frame. The steps tocalculate MFBANK/MFCCs from an audio signal are as follows:

1. Analog to digital conversion (sampling):Sampling is the process of measuring the amplitude of the analog signal atregular intervals in time. These intervals are determined by the sampling rate,fs , which is the number of samples per second (measured in Hertz, Hz). Thesampling time intervals are: tn = n · Ts, (3.1)where Ts = 1fs is the sampling period, fs is the sampling rate, and n is theindex of the sample. The sampled signal is given by:
x [n] = x(tn), (3.2)

where x(tn) represents the value of the analog signal x(t) at the time tn.
2Feature extraction for speech recognition problems aims to find the intrinsic information relatedto vocal tract shape, which may be considered invariant among all speakers (i.e. invariant acousticspace). A feature vector extracted from a frame contains a set of independent features representingthe envelope of the speech spectrum. The basic assumption behind this idea is that the envelope ofthe spectrum is a course representation of the spectrum that has all relevant information related tothe speech recognition problem. In general, the fine spectral structure contains information about theexcitation (i.e. details related to speakers or voicing) in a source-filter speech production model, whichmay be a source of noise for speech recognizers [19, 20].

DRAFT3.3. SPEECH REPRESENTATION 30

According to the Nyquist-Shannon Sampling theorem, the sampling rate mustbe at least twice the highest frequency present in the analog signal to ac-curately capture it without aliasing. Example: For a speech signal with amaximum frequency of 4 kHz, a typical sampling rate would be 8 kHz orhigher.
2. Pre-Emphasis: The first step is to apply a pre-emphasis filter to the signal toamplify the high frequencies, which often have lower amplitude compared tolower frequencies. The filter equation is:

y[n] = x [n]− α · x [n − 1], (3.3)
where: x [n] is the original signal, y[n] is the pre-emphasized signal, and α isa pre-emphasis coefficient, typically around 0.97. For example, If the originalsignal is x = [1, 2, 3, 4], and α = 0.97, then:

y = [1, 2− 0.97 · 1, 3− 0.97 · 2, 4− 0.97 · 3] = [1, 1.03, 1.06, 1.09]
3. Framing:The continuous signal is divided into overlapping frames to capture temporalcharacteristics. Each frame typically spans 20-40 ms with an overlap of 50%.There is no specific equation, but conceptually, you can represent it as:

Framei = x [n+ i · hop_size] for n = 0 to frame_size− 1, (3.4)
where i is the frame index, hop_size is the step between successive frames.For example, a signal x = [1, 2, 3, 4, 5, 6, 7, 8], frame size = 4, and hop size =2, the frames would be:

Frame1 = [1, 2, 3, 4], Frame2 = [3, 4, 5, 6], Frame3 = [5, 6, 7, 8]
4. Windowing:Each frame is multiplied by a window function, typically a Hamming window,to minimize the signal discontinuities at the beginning and end of each frame.The equation for windowing is :

y[n] = x [n] · w [n], (3.5)
where w [n] is the Hamming window function:

w [n] = 0.54− 0.46 · cos(2πnN − 1
) (3.6)

DRAFT3.3. SPEECH REPRESENTATION 31

For a frame x = [1, 2, 3, 4] and a Hamming window:
w = [0.08, 0.54, 0.54, 0.08],

y = [1 · 0.08, 2 · 0.54, 3 · 0.54, 4 · 0.08] = [0.08, 1.08, 1.62, 0.32]
5. Fast Fourier Transform (FFT):FFT is applied to each windowed frame to convert the time-domain signal intothe frequency domain. FFT is an efficient algorithm to compute the DiscreteFourier Transform (DFT) of a sequence. The DFT converts the time-domainsignal into its frequency components. For a sequence x [n] of length N , theDFT is given by:

X [k] = N−1∑
n=0 x [n] · e−j 2πN kn, (3.7)

where N is the number of points in the FFT, X [k] is the frequency componentat index k , k ranges from 0 to N − 1, and j is the imaginary unit (j = √−1).Let’s break down the application of the Fast Fourier Transform (FFT) to thegiven frame x = [1, 1.08, 1.62, 0.32]. This is a sequence of four values repre-senting a discrete signal:
X = FFT([1, 1.08, 1.62, 0.32]) = [4.02, −0.62− 0.76j, 1.22, −0.62 + 0.76j]

Since the frame has 4 elements, the FFT will produce 4 complex values corre-sponding to the frequency components. For each k (ranging from 0 to 3), theFFT computes X [k] as follows:- X [0]: X [0] = 1 · e−j·0 + 1.08 · e−j·0 + 1.62 · e−j·0 + 0.32 · e−j·0X [0] = 1 + 1.08 + 1.62 + 0.32 = 4.02
- X [1]: X [1] = 1 · e−j·0 + 1.08 · e−j π2 + 1.62 · e−jπ + 0.32 · e−j 3π2Let’s substitute the values of the exponentials:

X [1] = 1 + 1.08(−j) + 1.62(−1) + 0.32(j)
Simplifying: X [1] = 1− 1.62 + (−1.08j + 0.32j)X [1] = −0.62− 0.76j

DRAFT3.3. SPEECH REPRESENTATION 32

- X [2]:
X [2] = 1 · e−j·0 + 1.08 · e−j·π + 1.62 · e−j·2π + 0.32 · e−j·3π

Let’s substitute the values of the exponentials:
X [2] = 1− 1.08 + 1.62− 0.32

Simplifying: X [2] = (1− 1.08) + (1.62− 0.32)X [2] = −0.08 + 1.30 = 1.22
- X [3]: X [3] = 1 · e−j·0 + 1.08 · e−j 3π2 + 1.62 · e−jπ + 0.32 · e−j π2Let’s substitute the values of the exponentials:

X [3] = 1 + 1.08(j) + 1.62(−1) + 0.32(−j)
Simplifying: X [3] = 1− 1.62 + (1.08j − 0.32j)X [3] = −0.62 + 0.76jHence, the resulting frequency components are:

X = [4.02, −0.62− 0.76j, 1.22, −0.62 + 0.76j]
These are the complex numbers that represent the magnitude and phase of thedifferent frequency components in the original signal. X [0] = 4.02 representsthe DC component (frequency 0), representing the average value of the inputsignal. The X [1] and X [3] are complex conjugates and represent the positiveand negative frequency components, respectively. This component X [2] = 1.18represents another frequency in the signal. Each of these complex numberscan be used to understand the signal’s frequency domain characteristics, in-cluding both magnitude and phase.

6. Mel Filter Bank (with Triangular Filters):The Mel filter bank consists of a series of triangular filters applied to thepower spectrum of the signal to mimic the human ear’s response to differentfrequencies. These filters are linearly spaced in the Mel scale but non-linearlyspaced in the frequency domain. The steps to compute the triangular filters:

DRAFT3.3. SPEECH REPRESENTATION 33

• Determine the Frequency Range: Let fmin and fmax be the minimum andmaximum frequencies in the signal. Convert these frequencies to the Melscale using the Mel scale formula:
m(f) = 2595 · log10

(1 + f700
)

Convert fmin and fmax to Mel scale:
mmin = m(fmin), mmax = m(fmax)• Determine the Number of Filters: - Decide the number of Mel filters Myou want to use (typically 40-128).• Equally Spaced Points in Mel Scale: - Calculate M + 2 equally spacedpoints between mmin and mmax:

mi = mmin + i · mmax −mminM + 1 , for i = 0, 1, . . . ,M + 1
• Convert Mel Frequencies Back to Hertz: - Convert the Mel scale pointsmi back to frequencies fi using the inverse Mel scale formula:

fi = 700 · (10 mi2595 − 1)
• Determine the FFT Bins: - Map the frequencies fi to the nearest FFTbin indices ki. The FFT bin k corresponding to frequency f is given by:

ki = ⌊(N + 1) · fifs
⌋

where N is the FFT size and fs is the sampling frequency.• Construct the Triangular Filters: Each triangular filter Hm(k) is definedover three points km−1, km, and km+1, corresponding to the lower, center,and upper frequencies of the filter. The triangular filter is defined as:
Hm(k) =


0 if k < km−1k−km−1km−km−1 if km−1 ≤ k ≤ kmkm+1−kkm+1−km if km ≤ k ≤ km+10 if k > km+1Essentially, the filter is 0 before km−1 and after km+1, and it linearly risesfrom 0 to 1 between km−1 and km, then linearly falls from 1 to 0 betweenkm and km+1.

DRAFT3.3. SPEECH REPRESENTATION 34

• Compute the Power Spectrum: Let X [k] be the DFT of x [n], then thepower spectrum is given by:
P [k] = |X [k]|2 (3.8)

Here, |X [k]|2 represents the magnitude squared of the DFT coefficients.• Apply Mel filters to the power spectrum: To compute the Mel filter bankenergies, you convolve the power spectrum P [k] with each Mel filterHk [m]. In discrete time, this operation can be represented as:
Em =∑k P [k] · Hm[k], (3.9)

where: Em is the Mel filter bank energy for the m-th filter.
For example, assume fmin = 0 Hz, fmax = 8000 Hz, M = 3 filters, N = 512(FFT size), and fs = 16000 Hz (sampling frequency).To compute the Mel filter bank energies Ek exactly in the given example,follow these steps:- Mel Points: m0 = 0, m1 = 710, m2 = 1420, m3 = 2130, m4 = 2840.- Frequencies: f0 = 0 Hz, f1 ≈ 614 Hz, f2 ≈ 1767 Hz, f3 ≈ 3933 Hz, f4 ≈ 8000Hz.- FFT Bin Indices: k0 = 0, k1 ≈ 19, k2 ≈ 56, k3 ≈ 126, k4 ≈ 256.- Construct Triangular Filters: Filter H1(k) between k0 = 0, k1 = 19, andk2 = 56:

H1(k) =


0 if k < 0k−k0k1−k0 if 0 ≤ k ≤ k1k2−kk2−k1 if k1 ≤ k ≤ k20 if k > k2
Filter H2(k) between k1 = 19, k2 = 56, and k3 = 126:

H2(k) =


0 if k < k1k−k1k2−k1 if k1 ≤ k ≤ k2k3−kk3−k2 if k2 ≤ k ≤ k30 if k > k3

DRAFT3.3. SPEECH REPRESENTATION 35

Filter H3(k) between k2 = 56, k3 = 126, and k4 = 256:
H3(k) =


0 if k < k2k−k2k3−k2 if k2 ≤ k ≤ k3k4−kk4−k3 if k3 ≤ k ≤ k40 if k > k4

- Compute Mel Filter Bank Energies: The power spectrum example (arbitraryvalues for illustration):
P = [1.2, 2.5, 3.0, 1.8, 2.0, . . .]

- Applying Filters to Power Spectrum:- For filter H1(k):
E1 = k2∑

i=k0
P [i] · H1[i]

where: H1[0] = 0, H1[1] = 1− 019− 0 = 0.05, up to H1[19] = 1
- For filter H2(k):

E2 = k3∑
i=k1

P [i] · H2[i]
where:

H2[19] = 0, H2[20] = 20− 1956− 19 ≈ 0.03, up to H2[56] = 1
- For filter H3(k):

E3 = k4∑
i=k2

P [i] · H3[i]
where:

H3[56] = 0, H3[57] = 57− 56126− 56 ≈ 0.01, up to H3[126] = 1
The constructed filters are shown in Figure 3.1. Finally, sum the productof each P [i] with the corresponding Hk [i] values to get the exact Mel filterbank energies E1, E2, E3 for the filters. This process results in the Mel-scaledfeatures used for further audio analysis.

DRAFT3.3. SPEECH REPRESENTATION 36

Figure 3.1: Three Mel-spaced triangle filters.
7. Logarithm of filter bank energies:Take the logarithm of the filter bank energies to compress the dynamic range.

Sm = log(Em)
where Em is the energy of the signal after passing through the mth filter. Forexample, if Esm = [2, 4, 6], then:

Em = log([2, 4, 6]) = [0.69, 1.39, 1.79]
The processing is done to generate the MFBANK features at this step wherethe output matrix is T × d where T is the number of frames and d is thenumber of triangle filters.8. Discrete Cosine Transform (DCT):Apply DCT to decorrelate the filter bank energies and obtain the MFCCs. Thetransform equation is given by:

cn = M−1∑
m=0 Em · cos [πn(2m+ 1)2M

] (3.10)
where: M is the number of Mel filters, n is the index of the coefficient. Forexample,If Em = [0.69, 1.39, 1.79], then:

cn = DCT([0.69, 1.39, 1.79]) = [3.87, −0.95262794, −0.15]
9. Final MFCC Coefficients:Typically, the first 12-13 coefficients are taken as the MFCC features, excludingthe 0th coefficient which represents the average log energy of the signal. Byfollowing these steps, you can compute the MFCCs for any given audio signal.

DRAFT3.3. SPEECH REPRESENTATION 37

10. Mean Removal and Delta Calculations in MFCC:In the context of MFCC (Mel-Frequency Cepstral Coefficients), mean removaland delta calculations are crucial steps for improving the robustness of thefeatures. The MFCC features can be normalized by subtracting the meanof each coefficient across all frames, ensuring that the features are centeredaround zero. This helps in reducing the effects of noise and variations in theamplitude of the signal.Let X be a matrix of MFCC features where X ∈ RT×d, T is the number offrames, and d is the number of MFCC coefficients per frame. - X [t, n] denotesthe n-th MFCC coefficient of the t-th frame. The mean µn of the n-th MFCCcoefficient across all frames is calculated as:
µn = 1T T∑

t=1 X [t, n]
The mean-removed MFCC X ′[t, n] is then obtained by subtracting the meanfrom each coefficient: X ′[t, n] = X [t, n]− µnSince speech is a time varying signal, the basic acoustic features extractedfrom short time signal analysis do not capture speech dynamics. In order toconsider the temporal correlation between the adjacent speech frames, thebasic acoustic vector is augmented with its first (∆) and second order deriva-tives (∆∆) as dynamic features [21]. These features are usually computed froma window of frames centered around the current frame using a simple re-gression method. Augmenting the feature vector with the dynamic featuresleads to significant improvements in recognition performance within the HMMframework.3 The delta coefficient ∆X [t, n] is calculated using the differencebetween the MFCC coefficients in neighboring frames. A common approach isto use a symmetric window of size N around each frame:

∆X [t, n] = ∑Kk=1 k · (X [t + k, n]− X [t − k, n])2∑Kk=1 k2
Here, K is the window size, typically set to 2. The delta-delta coefficient∆2X [t, n] is calculated similarly to the delta, but applied to the delta coeffi-cients:

∆2X [t, n] = ∑Kk=1 k · (∆X [t + k, n]− ∆X [t − k, n])2∑Kk=1 k2
3The HMM framework will be described Chapter 13.

DRAFT3.4. IMAGE REPRESENTATION 38

The combination of Mel filter bank energies and MFCCs4 allows speech recog-nition systems to effectively model and interpret human speech. By leveraginghuman auditory perception, these techniques enhance the robustness and accuracyof recognition algorithms in various applications.
3.4 Image Representation
An image can be represented as a grid of individual pixels, where each pixel rep-resents a small, uniform block of color. The pixel grid is typically organized in a2D matrix form where each cell corresponds to a pixel with a color value. For acolor image, each pixel usually has three color channels (Red, Green, Blue - RGB),represented as a 3D array (height, width, and color channels). Consider a grayscaleimage of size 5x5 pixels. It can be represented as a matrix:

Image =


255 200 180 100 50230 210 190 120 80200 200 200 200 200150 140 130 120 110100 80 60 40 20


Here, each number represents the intensity of a pixel in a grayscale image (0 =black, 255 = white).Alternatively, an image can be represented as a grid of patches, where each patchis a small block or sub-region of the image. This approach is used in models like theVision Transformer (ViT), where the image is divided into non-overlapping patches,and each patch is treated as a single unit or token. Consider a 4x4 image dividedinto four 2x2 patches:

Image =


1 2 3 45 6 7 89 10 11 1213 14 15 16


Patches (2x2):Patch 1: [[1, 2], [5, 6]]Patch 2: [[3, 4], [7, 8]]Patch 3: [[9, 10], [13, 14]]Patch 4: [[11, 12], [15, 16]]
4The Mel filter bank energies are usually used in neural networks based speech recognition/syn-thesis systems and the MFCCs are usually used in diagonal Gaussian based speech recognitionsystems.

DRAFT3.4. IMAGE REPRESENTATION 39

The images below show an example image (i.e. Figure 3.2) along with its pixelrepresentation (i.e. Figure 3.3). They also include a visualization of the imagebroken down into patches (i.e. Figure 3.4).

Figure 3.2: Example image illustrating the original visual content.

Figure 3.3: Pixel representation of the example image, showcasing individual pixelvalues.

DRAFT3.4. IMAGE REPRESENTATION 40

Figure 3.4: The example image divided into patches, highlighting smaller regions ofthe image.
3.4.1 Video RepresentationA video can be thought of as a time series of images. Each frame in the video is animage, and when these frames are displayed sequentially at a certain frame rate(e.g., 24 or 30 frames per second), they create the illusion of motion.A video is therefore represented as a four-dimensional array:

• Height: Number of pixels in each frame along the vertical axis.
• Width: Number of pixels in each frame along the horizontal axis.
• Channels: Number of color channels (e.g., RGB).
• Time (Frames): The number of frames in the video.

Assume a video of 10 frames, each of size 128x128 pixels with 3 color channels(RGB), can be represented as a tensor of shape:
Video Shape: (10, 128, 128, 3)

where: ‘10‘ is the number of frames, ‘128‘x‘128‘ is the size of each frame, and ‘3‘ isthe number of color channels.

DRAFT
41

DRAFT4.1. THE MODEL 42

4. Linear Regression Net-
works

All models are wrong, but some areuseful. — George Box
In this chapter, we will introduce one of the most fundamental and widely usedmethods in statistics, machine learning, and data science: linear regression. Lin-ear regression is a technique that allows us to model the relationship betweeninput variables (also called predictors or features) and output variables (also calledresponses or targets) using a linear function.
4.1 The model
Linear regression is a method of finding the best linear relationship between inputvariables and output variables as shown in Figure 4.1. The input variables maybe float, binary, or integer values and the output variables must be real or floatvalues1. For example, if the input has 3 dimensions or variables and the output has2 dimensions, then the relation between the inputs and outputs in the model willlook like this: y1 = w11x1 +w12x2 +w13x3 + b1y2 = w21x1 +w22x2 +w23x3 + b2 (4.1)
where each output is connected to all inputs as shown in Figure4.2. Hence, Equation(4.1) represents a fully connected or dense network. Equation (4.1) can be writtenin matrix form as well:[y1y2

] = [w11 w12 w13w21 w22 w23
]x1x2x3

 + [b1b2
] (4.2)

1House price prediction is an example for predicting a float variable (i.e. house price) given theinput features. The input features could be the number of rooms, area, number of bathrooms,... etc.

DRAFT4.2. LEARNING PROBLEM 43

Figure 4.1: Linear function between one input variable and one output variable fittedusing linear regression model.
Generally, linear regression single-layer network can be written as:

y = Wx + b (4.3)
where y ∈ RK is a vector of output variables, x ∈ Rd is a vector of input variables(each variable is a feature), W ∈ RK×d and b ∈ RK is a bias vector. The W and bare called parameters and they are estimated during the training phase using thetraining data.Finding the optimal values for W and b using the training data is the subject of thenext section.
4.2 Learning problem
Given a training data (x1, t1), (x2, t2), . . . , (xN , tN), the goal of the learning algorithmis to estimate the values of the W and b where x ∈ Rd and t ∈ RK . In supervisedlearning settings, we define an objective function to measure how close the t to itspredicted value y over all the training data N . Concretely, we define E as follows:

En(W, b) = 12 ||yn − tn|| = 12 K∑
k=1(ynk − tnk)2 (4.4)

DRAFT4.2. LEARNING PROBLEM 44

Figure 4.2: Linear regression network that has an input with 3 nodes or variablesand the output has 2 nodes.
and E (W, b) = 1N N∑

n=1 En (4.5)
where E is known as Mean Square Error (MSE) loss function and n is an index forthe training sample (xn, tn). Since y is a float vector, MSE loss function is a suitableobjective function for linear regression. In order to estimate the values of W and bparameters, we minimize the loss function with respect to the parameters. The lossfunction measures how well the linear model fits the data, and the parameters arethe coefficients and biases of the linear model. By minimizing the loss function, wecan find the optimal values of the parameters that make the best predictions for theoutput variable.As described in Chapter 2, linear models with MSE loss function (i.e quadraticloss function) has a unique solution. Moreover, it can be found analytically. Let’sassume a multiple regression problem where we have multiple input variables andone output variable. In matrix form, the loss function is given by

E (θ) = 12N (Xθ − t)T (Xθ − t) (4.6)
where t is the output matrix of size N × 1, X is the input matrix of size N × d + 1where we add the bias as an extra feature that has a value = 1, θ = {W, b} is theparameters matrix of size d+1× 1. Ignoring the constant term 12N since it does notaffect the optimization results and simplifying the cost function:E (θ) = θTXTXθ − θTXT t − tTXθ + tT t (4.7)Since θTXT t = tTXθ = scalar,E (θ) = θTXTXθ − 2tTXθ + tT t (4.8)

DRAFT4.2. LEARNING PROBLEM 45

To find the optimal value of θ, we compute the first derivative of the cost functionwith respect to the parameters and set it to zero.∂E (θ)∂θ = 2XTXθ − 2XT t = 0 (4.9)
It can be simplified XTXθ = XT t (4.10)Hence, the analytical solution is given by

θ = (XTX)−1XT t (4.11)
However, finding the values of the parameters W and b using the analytical solutiondoes not scale well with the amount of training data. Hence, we will focus on thegradient descent solution in this chapter. The gradient of MSE loss function withrespect to the parameters W and b can be computed as follows:∂En(W, b)∂wrs = ∂En(W, b)∂yr ∂yr∂wrs = (ynr − tnr)xns (4.12)
where wrs is the element (r, s) of the matrix W. Hence,

∂E (W, b)∂wrs = 1N N∑
n=1(ynr − tnr)xns (4.13)

and the gradient of the loss function with respect to the bias variable br is given by
∂E (W, b)∂br = 1N N∑

n=1(ynr − tnr) (4.14)
Using the gradient descent, the matrix of the weights and the bias vector can beupdated as follows: wt+1rs = wtrs − η∂E (W, b)∂wrsbt+1r = btr − η∂E (W, b)∂br

(4.15)
where η is the learning rate. The algorithm can update the parameters after thegradient over the whole training set is accumulated. To scale the problem to a largeamount of training data, we use a variant called mini-batch stochastic gradientto estimate the parameters of the linear regression model. This algorithm will bedescribed in the next subsection.

DR
AF

T

4.3. EXAMPLE 46

4.2.1 Numerical solutionMini-batch stochastic gradient descent is a variation of gradient descent that up-dates the parameters of the linear regression model using a subset of the data(called a mini-batch) at each iteration. It is a numerical solution to find the globalminimum of the quadratic loss function with respect to the parameters.The idea is to reduce the computational cost and memory usage of gradient descent,while still achieving a good convergence rate.The algorithm works as follows:• Initialize the parameters W and b randomly or with zeros.• Divide the data into small batches of equal size (for example, 32 or 64).• Repeat until convergence or a maximum number of epochs:
– For each batch:∗ Compute the predictions of the linear model for the batch.∗ Use Equation (6.7) to compute the loss function for the batch (i.e.mean squared error) .∗ Compute the gradients of the loss function with respect to the pa-rameters for the batch using Equation (4.13) and Equation (4.14).∗ Update the parameters using Equation (5.13).
– Return the final parameters.The advantages of mini-batch gradient descent are:• It can handle large datasets that do not fit in memory.• It can exploit parallelism and vectorization to speed up computationsbut it requires tuning the batch size and the learning rate hyperparameters.

4.3 Example
To illustrate the linear regression algorithm, Table 4.3 with 10 rows of randomtraining data was created. The first three columns represent input features (x1, x2, x3)and the last two columns represent output targets (t1, t2):

12 import numpy as np3 from sklearn . metrics import mean_squared_error45 # Training data6 X = np.array ([

DR
AF

T

4.3. EXAMPLE 47

Table 4.1: Synthesized data for linear regression modeling. The input variables are3 and the output variables are 2 and they are float variables.x1 x2 x3 t1 t20.23 0.87 0.95 2.74 1.820.34 0.56 0.29 1.42 2.610.98 0.68 0.05 3.12 2.490.51 0.24 0.64 1.63 1.950.42 0.75 0.49 2.84 2.370.89 0.11 0.93 2.17 1.680.14 0.91 0.25 1.96 2.550.76 0.41 0.53 2.29 2.240.66 0.04 0.08 1.27 1.350.45 0.82 0.76 2.86 2.74
7 [0.23 , 0.87 , 0.95] ,8 [0.34 , 0.56 , 0.29] ,9 [0.98 , 0.68 , 0.05] ,10 [0.51 , 0.24 , 0.64] ,11 [0.42 , 0.75 , 0.49] ,12 [0.89 , 0.11 , 0.93] ,13 [0.14 , 0.91 , 0.25] ,14 [0.76 , 0.41 , 0.53] ,15 [0.66 , 0.04 , 0.08] ,16 [0.45 , 0.82 , 0.76] ,17])18 T = np.array ([19 [2.74 , 1.82] ,20 [1.42 , 2.61] ,21 [3.12 , 2.49] ,22 [1.63 , 1.95] ,23 [2.84 , 2.37] ,24 [2.17 , 1.68] ,25 [1.96 , 2.55] ,26 [2.29 , 2.24] ,27 [1.27 , 1.35] ,28 [2.86 , 2.74] ,29])3031 # Analytical solution32 def analytical_solution (X, T):33 X_b = np.c_[np.ones ((X.shape [0], 1)), X]34 theta = np. linalg .inv(X_b.T.dot(X_b)).dot(X_b.T).dot(T)35 return theta3637 theta_analytical = analytical_solution (X, T)

DRAFT4.4. ASSIGNMENT 48

38 print(" Analytical solution coefficients :", theta_analytical)3940 # Gradient descent41 def gradient_descent (X, T, eta =0.1 , iterations =100000) :42 m, n = X.shape43 theta = np. random .randn(n + 1, T.shape [1])44 X_b = np.c_[np.ones ((m, 1)), X]45 for i in range(iterations):46 gradients = 2 / m * X_b.T.dot(X_b.dot(theta) - T)47 theta -= eta * gradients48 return theta4950 theta_gradient_descent = gradient_descent (X, T)51 print(" Gradient descent coefficients :", theta_gradient_descent)5253 # Comparing results54 Y_analytical = np.c_[np.ones ((X.shape [0], 1)), X]. dot(
theta_analytical)55 Y_gradient_descent = np.c_[np.ones ((X.shape [0], 1)), X]. dot(
theta_gradient_descent)5657 mse_analytical = mean_squared_error (T, Y_analytical)58 mse_gradient_descent = mean_squared_error (T, Y_gradient_descent)5960 print("Mean Squared Error - Analytical Solution :", mse_analytical)61 print("Mean Squared Error - Gradient Descent :", mse_gradient_descent
)Listing 4.1: Python example for finding the linear regression parameters using thegradient descent algorithm. The analytical solution is provided as well.

Since linear regression has a unique solution, both analytical and gradient descentmethods have the same result.
4.4 Assignment
Predict house price using the Keras deep learning library and Google colab. To loadthe dataset, please use the method: tf.keras.datasets.boston_housing.load_data.

DRAFT
49

DRAFT5.1. THE MODEL 50

5. Binary Classification
Networks

Logistic regression is a powerfultool for modeling the relationshipbetween a categorical responsevariable and some explanatoryvariables. It is especially usefulwhen the response variable hasonly two possible outcomes, such assuccess/failure, yes/no, orhealthy/sick. — Alan Agresti
In this chapter, we will introduce a probabilistic binary classification model1 thatestimates the probability of an outcome that can only be one of two values, suchas yes or no, based on one or more predictor variables. Hence, it can be used tomake a binary classifier by choosing a threshold value and classifying inputs withprobability greater than the threshold as one class, and below the threshold as theother class
5.1 The model
Logistic regression is a classification method that is used to predict the relationshipbetween a binary dependent variable and one or more independent variables. Asshown in Figure 5.1, the network has one output variable and many input variables.The input variables may have float, binary, or integer values, and the output proba-
bility variable is a float bounded between 0.0 and 1.0. For example, if the input has3 dimensions or variables and only one output variable, then the relation betweenthe inputs and the output in the model will look like this:

z = w1x1 +w2x2 +w3x3 + b (5.1)
1Also known as logistic regression in the literature.

DRAFT5.2. LEARNING PROBLEM 51

where the intermediate z is connected to all inputs and has a float value. Hence,Equation (5.1) represents a fully connected or dense network. It can be written inmatrix form as well:
z = [w1 w2 w3]

x1x2x3
 + b (5.2)

Generally, logistic regression single-layer network can be written as:
z = wT x + b (5.3)

where z ∈ R is a variable, x ∈ Rd is a vector of input variables (each variable is afeature), w ∈ Rd and b is a bias. The w and b are called parameters and they areestimated during the training phase using the training data.In addition, the output y is computed in Equation (5.4) using a sigmoid transformationor activation function. It is used to map z to a float bounded between 0.0 and 1.0as shown in Figure 5.22. Naturally, the binary activation function can transform theinput to output that has a value 0 or 1 as shown in Figure 5.3. However, this functionis not continuous and not differentiable at 0. This explains why sigmoid was selectedas a transformation method for binary classification. The sigmoid activation functionis a continuous and differentiable function. Hence, we can compute the gradient ofa loss function based on that activation function.
y = 11 + e−z (5.4)

Finding the optimal values for w and b using the training data is the subject of thenext section.
5.2 Learning Problem
Given a training data (x1, t1), (x2, t2), . . . , (xN , tN), the goal of the learning algorithmis to estimate the values of the w and b where x ∈ Rd and t ∈ {1, 0}. We definean objective function to measure how close the t to its predicted value y over allthe training data N . Concretely, we define E as follows:

En(w, b) = −(tn logpn + (1− tn) log(1− pn)) (5.5)
and E (w, b) = 1N N∑

n=1 En (5.6)
2It is so called because its graph is "S-shaped".

DRAFT5.2. LEARNING PROBLEM 52

Figure 5.1: A logistic regression model (i.e. binary classification model) must haveonly one output variable and optional count of input variables.
where E is known as the binary cross-entropy (BCE) loss function and n is an indexfor the training sample (xn, tn). The loss function is plotted in Figure 5.4. The lossincreases exponentially as the predicted probability of the true class gets closer tozero. Since y is a float value between 0 and 1, the BCE loss function is a matchingobjective function for logistic regression. In order to estimate the values of w and bparameters, we minimize the loss function with respect to the parameters.The logistic regression model with BCE loss function has a unique solution3. Thegradient of BCE loss function with respect to the parameters w and b can be com-puted as follows: ∂En(w, b)∂wi = ∂En(w, b)∂yn ∂yn∂zn ∂zn∂wi (5.7)
where wi is the element i of the vector w. The three terms can be computed as

3It can not be found analytically.

DRAFT5.2. LEARNING PROBLEM 53

Figure 5.2: Sigmoid activation function.
follows: ∂En(w, b)∂yn = − tnyn + 1− tn1− yn= −(1− yn)t + yn(1− tn)yn(1− yn)= (yn − tn)yn(1− yn)

(5.8)
Using Equation 5.4, the gradient of the output yn with respect to zn:∂yn∂zn = 0− e−zn (−1)(1 + e−zn)2

= 1(1 + e−zn) · e−zn(1 + e−zn)
= yn · e−zn + 1− 1(1 + e−zn)= yn(1− 1(1 + e−zn))= yn(1− yn)

(5.9)

And ∂zn∂wi is given by ∂zn∂wi = xni (5.10)

DRAFT5.2. LEARNING PROBLEM 54

Figure 5.3: Binary activation function.
Hence, Equation (5.7) can be written using the three terms computed above asfollows: ∂En(w, b)∂wi = (yn − tn)yn(1− yn)yn(1− yn)xni= (yn − tn)xi (5.11)
and the gradient of the loss function with respect to the bias variable b is given by∂En(w, b)∂b = (yn − tn) (5.12)
Using the gradient descent, the vector of the weights and the bias term can beupdated as follows:

wt+1i = wti − η 1N N∑
n=1(yn − tn)xni

bt+1 = bt − η 1N N∑
n=1(yn − tn)

(5.13)
where η is the learning rate. Using mini-batch stochastic gradient descent, it ispossible to learn the parameters efficiently for large datasets. The algorithm is verysimilar to the one described in section 4.2.1.

DRAFT5.3. CLASSIFICATION DECISION 55

Figure 5.4: Binary cross-entropy objective function.
5.3 Classification Decision
The output of the learning algorithm is to estimate the values of the w and bparameters. Hence, they can be used at the test time for prediction. Since y is afloat value between 0 and 1, it can not be used directly to classify the input samplesto 0 or 1. To overcome this problem, we define a threshold for decision

ŷ = {1 if y ≥ 0.50 if y < 0.5where ŷ is the final decision either 0 or 1. Logistic regression separates the twoclasses with a linear decision boundary. The linear decision boundary of logisticregression is the set of all points x that satisfy:
P(y = 1|x) = P(y = 0|x) = 11 + e−z = 12 (5.14)

then z = w1x1 +w2x2 + · · ·+wdxd + b = 0 (5.15)For two-dimensional data w1x1 +w2x2 + b = 0 (5.16)Hence, x2 = − bw2 − w1w2 x1 (5.17)

DRAFT5.4. EVALUATION 56

For example, the two-dimensional AND gate4 is shown in Table 5.5. The first twocolumns represent input features (x1, x2) and the last column columns representoutput targets t . The decision boundary is shown in Figure 5.5.

Figure 5.5: The decision boundary for the two-dimensional "AND" gate.
5.4 Evaluation
Binary classification evaluation metrics help assess the performance of a model thatcategorizes instances into one of two classes: typically a "positive" class (e.g., adisease is present) and a "negative" class (e.g., a disease is absent). The confusionmatrix is the starting point for binary classification metrics as shown in Table 5.1.It is a 2× 2 table that categorizes predictions:

Predicted Positive Predicted NegativeActual Positive True Positive (TP) False Negative (FN)Actual Negative False Positive (FP) True Negative (TN)
Table 5.1: The binary classification confusion matrix.

Below is a detailed breakdown of common evaluation metrics, including precision,recall, F1-score, and AUC (Area Under the Curve):
4The AND gate is known in logic design literature.

DRAFT5.4. EVALUATION 57

1. Precision: Precision measures the accuracy of positive predictions and is de-fined as:
Precision = TPTP + FP (5.18)

Precision is important when false positives are costly, for instance in medicaldiagnoses, where a false positive could lead to unnecessary treatments.
2. Recall (Sensitivity or True Positive Rate): Recall indicates the model’s abilityto correctly identify actual positives and is defined as:

Recall = TPTP + FN (5.19)
High recall is crucial when false negatives are costly, such as in spam detec-tion, where failing to flag a spam email is more problematic than accidentallyflagging a valid one.

3. F1-Score: The F1-score is the harmonic mean of precision and recall, balanc-ing the two metrics and penalizing extreme values in either. It’s particularlyuseful when the class distribution is imbalanced:
F1-score = 2 · Precision× RecallPrecision + Recall (5.20)

A high F1-score implies a good balance between precision and recall, mean-ing the model performs well on both detecting positives and minimizing falsepositives.
4. Area Under the Curve (AUC): The Area Under the Curve (AUC), specificallyfor the Receiver Operating Characteristic (ROC) curve, evaluates a model’sability to distinguish between classes across various threshold settings. TheROC curve plots the True Positive Rate (TPR) against the False Positive Rate(FPR), with TPR as:

TPR = TPTP + FN (5.21)
and FPR as:

FPR = FPFP + TN (5.22)

DR
AF

T

5.4. EVALUATION 58

• Initialize variables for TPR and FPR, typically starting at (0, 0) on theROC curve.• For each unique threshold t , predict positive for all instances with scoresgreater than t .• Calculate the TPR and FPR for the current threshold.• Calculate AUC =∫ 10 TPR (FPR)d(FPR) using the Trapezoidal Rule: TheAUC can be computed by summing the areas of trapezoids formed byeach pair of consecutive points (FPRi,TPRi) and (FPRi+1,TPRi+1) onthe ROC curve:
AUC = n−1∑

i=1 (FPRi+1 − FPRi) · TPRi+1 + TPRi2 (5.23)
This formula computes the area for each trapezoid under the curve andsums them up to get the total AUC (see the Python implementation forthe AUC calculations in Listing 5.1). The AUC is the area under this ROCcurve, ranging from 0 to 1 (see Figure 5.6). A model with an AUC of0.5 performs no better than random guessing, while an AUC close to 1indicates a strong ability to differentiate between classes. Since AUC-ROC evaluates model performance at multiple thresholds, it provides athreshold-independent metric that generalizes well across different con-texts. When the data is extremely imbalanced, meaning the positive classis rare compared to the negative class, AUC-ROC may provide an overlyoptimistic view. In such cases, even a model that performs poorly inidentifying the minority class can yield a high AUC score, as the met-ric does not give adequate emphasis to the minority class. Metrics likePrecision-Recall AUC, which focuses on the positive class, might be moreinsightful.

Each of these metrics provides unique insights into model performance, with preci-sion and recall balancing error types, F1-score balancing precision and recall, andAUC reflecting general model discrimination ability across thresholds.
1 import numpy as np2 import matplotlib . pyplot as plt34 from sklearn . metrics import roc_auc_score56 # True labels and predicted probabilities7 true_labels = np.array ([0, 1, 1, 0, 1, 0, 1, 0])8 predicted_probs = np.array ([0.1 , 0.9, 0.8, 0.3, 0.6, 0.2, 0.95 ,

0.4])9

DR
AF

T

5.4. EVALUATION 59

Figure 5.6: The plot shows the ROC curves for different AUC values: AUC>0.5 (theclassifier is likely to effectively separate positive class values from negative ones, asit correctly identifies a greater number of True Positives and True Negatives com-pared to False Positives and False Negatives.), AUC=1 (perfect classifier), AUC=0.5(random guess), and AUC=0 (an inverse predictor is a classifier that incorrectly la-bels all negative instances as positive and all positive instances as negative.).
10 # Define thresholds11 thresholds = np. linspace (0, 1, 11) # 0.0 to 1.0 in steps of 0.11213 # Calculate TPR and FPR for each threshold14 tpr = []15 fpr = []16 for thresh in thresholds :17 predictions = (predicted_probs >= thresh). astype (int)18 tp = np.sum ((predictions == 1) & (true_labels == 1))19 fn = np.sum ((predictions == 0) & (true_labels == 1))20 fp = np.sum ((predictions == 1) & (true_labels == 0))21 tn = np.sum ((predictions == 0) & (true_labels == 0))2223 tpr. append (tp / (tp + fn) if (tp + fn) > 0 else 0)24 fpr. append (fp / (fp + tn) if (fp + tn) > 0 else 0)2526 # Calculate AUC using the trapezoidal rule27 auc = np.trapz(tpr , fpr)

DRAFT5.4. EVALUATION 60

28 print(f"AUC: {auc :.3f}")2930 # Verify with sklearn ’s roc_auc_score31 print(f"AUC (sklearn): { roc_auc_score (true_labels , predicted_probs)
:.3f}")323334 plt.plot(fpr , tpr , marker =’o’, label=f"AUC = {auc :.3f}")35 plt.plot ([0, 1], [0, 1], ’r--’, label=" Random Guess")36 plt. xlabel ("False Positive Rate (FPR)")37 plt. ylabel ("True Positive Rate (TPR)")38 plt.title("ROC Curve")39 plt. legend ()40 plt.show ()Listing 5.1: The script computes the AUC using manually calculated TPR and FPRvalues.

5.4.1 F1 Curve and threshold tuningIn binary or multilabel classification (see Chapter 7), threshold tuning involves find-ing an optimal decision threshold for converting predicted probabilities into binaryclass labels (0 or 1). By adjusting this threshold, we can influence metrics likeprecision, recall, and ultimately, the F1 score. Plotting the F1 score as a function ofthe threshold helps visualize how performance changes with the threshold and findan optimal balance between precision and recall for the specific task.Typically, classifiers produce a probability score, p ∈ [0, 1], indicating the likelihoodof an instance belonging to a particular class. The default threshold is usually setto 0.5; if p ≥ 0.5, the instance is classified as the positive class; otherwise, it’sclassified as the negative class (see Section 5.3). Increasing the threshold (e.g.,0.7 or 0.8) usually increases precision since only higher confidence predictions areconsidered positive. However, this can lower recall, as fewer positive instances arecaptured. Lowering the threshold (e.g., 0.3 or 0.2) generally increases recall butmight reduce precision since more instances, including those with low probabilityscores, are classified as positive. The F1 score is the harmonic mean of precisionand recall:
F1 = 2 · Precision · RecallPrecision + RecallSince F1 balances precision and recall, tuning the threshold for the highest F1 canhelp achieve an effective tradeoff between the two. To identify the optimal threshold,we compute the F1 score at different thresholds, typically ranging from 0 to 1, andplot the results. The steps to Generate the F1 Curve:• Split the dataset into training, development, and test sets.

DR
AF

T

5.4. EVALUATION 61

• Train the model on the training set.
• On the development set, use the model to output probability scores for eachinstance.
• Define a range of thresholds, e.g., threshold ∈ {0.0, 0.1, 0.2, . . . , 1.0}.
• For each threshold, calculate predicted labels and then compute precision,recall, and F1 score.
• Plot the F1 score on the y-axis and the threshold on the x-axis.
• The peak of the F1 curve indicates the threshold with the highest F1 score.
• The threshold at the peak of the F1 curve maximizes the F1 score and repre-sents a balance between precision and recall.
• Depending on the application, you might also consider thresholds where F1score is near-maximal but skewed toward higher precision or recall if one ismore critical.As an example, let’s say we have a range of threshold values {0.1, 0.2, . . . , 0.9} andthe computed F1 for each threshold are:

Threshold Precision Recall F10.1 0.65 0.95 0.770.2 0.70 0.90 0.790.3 0.75 0.85 0.800.4 0.80 0.82 0.810.5 0.82 0.78 0.800.6 0.85 0.75 0.800.7 0.88 0.70 0.780.8 0.90 0.65 0.760.9 0.92 0.60 0.73
Table 5.2: An example of F1 calculations using different thresholds.

From this table, we observe that the F1 score peaks at a threshold of 0.4 with anF1 score of 0.81. This is the optimal threshold for balancing precision and recall inthis example. A Python code example for plotting F1 Curve are listed below:
1 import numpy as np2 import matplotlib . pyplot as plt3 from sklearn . metrics import precision_score , recall_score , f1_score45 # Sample probability predictions and true labels

DR
AF

T

5.5. AN EXAMPLE 62

Table 5.3: Two-dimensional AND gate truth table.x1 x2 t0 0 00 1 01 0 01 1 1
6 probabilities = np. random .rand (100) # simulated probabilities7 true_labels = np. random . randint (0, 2, size =100) # simulated binary

labels89 thresholds = np. linspace (0, 1, 50)10 f1_scores = []1112 for threshold in thresholds :13 predictions = (probabilities >= threshold). astype (int)14 f1 = f1_score (true_labels , predictions)15 f1_scores . append (f1)1617 # Plotting the F1 score vs. threshold18 plt. figure (figsize =(10 , 6))19 plt.plot(thresholds , f1_scores , marker =’o’, color=’b’, label=’F1
Score ’)20 plt.title(’F1 Score vs. Decision Threshold ’)21 plt. xlabel (’Threshold ’)22 plt. ylabel (’F1 Score ’)23 plt. legend ()24 plt.grid ()25 plt.show ()Listing 5.2: A sample Python code to plot the F1 score against thresholds using abinary classifier’s probability predictions.

Maximizing the F1 approach is particularly effective in maximizing the classifier’sperformance in scenarios where both precision and recall are essential and providesinsight into how adjusting the decision threshold impacts classifier behavior.
5.5 An Example
A Python code is provided to illustrate the logistic regression learning algorithmand plot the decision boundary:

12 import numpy as np3 import matplotlib . pyplot as plt4

DRAFT5.5. AN EXAMPLE 63

5 def sigmoid (z):6 return 1 / (1 + np.exp(-z))78 def predict (X, w):9 return sigmoid (np.dot(X, w))1011 def cost_function (X, t, w):12 N = len(t)13 y = predict (X, w)14 E = -1/N * (np.dot(t.T, np.log(y)) + np.dot ((1-t).T, np.log (1-y)
))15 return E1617 def gradient_descent (X, t, w, alpha , iterations):18 m = len(t)19 E_history = []20 for i in range(iterations):21 y = predict (X, w)22 w = w - alpha * (1/m) * np.dot(X.T, (y-t))23 E_history . append (cost_function (X, t, w))24 return w, E_history2526 X = np.array ([[0 , 0], [0, 1], [1, 0], [1, 1]])27 t = np.array ([[0] , [0], [0], [1]])2829 m = len(t)30 X = np. hstack ((np.ones ((m, 1)), X))3132 n = X.shape [1]33 w = np.zeros ((n, 1))3435 alpha = 0.0136 iterations = 1000003738 w_final , E_history = gradient_descent (X, t, w, alpha , iterations)3940 print (predict (X, w_final))4142 x_1 = np. linspace (-0.5, 1.5)43 x_2 = -(w_final [0] + w_final [1]* x_1) / w_final [2]4445 plt.plot(x_1 ,x_2 ,label=’Decision Boundary ’)46 plt. scatter (0,0, label=’Class 0’)47 plt. scatter (0,1, label=’Class 0’)48 plt. scatter (1,0, label=’Class 0’)49 plt. scatter (1,1, label=’Class 1’)50 plt. xlabel (’x_1 ’)51 plt. ylabel (’x_2 ’)52 plt. legend ()

DRAFT5.6. ASSIGNMENT 64

53 plt. savefig (’decision_boundary_and .png ’)Listing 5.3: Python example for plotting the logistic regression decision boundaryfor AND Problem.
Since logistic regression has a unique solution, running the script several times willlead to the same result.
5.6 Assignment
Spam email detection (binary classification task) using the Keras deep learninglibrary and Google colab. To load the dataset, please visit https://archive.ics.
uci.edu/ml/datasets/spambase.

https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/ml/datasets/spambase

DRAFT
65

DRAFT6.1. THE MODEL 66

6. Multiclass Classification
Networks

When we make inferences based onincomplete information, we shoulddraw them from that probabilitydistribution that has the maximumentropy permitted by theinformation we do have.— E. T. Jaynes
In this chapter, we will introduce the probabilistic multiclass or multinomial classi-fication algorithm1. It aims to classify the input samples into one of three or moreclasses (for two classes only see Chapter 5 of binary classification).
6.1 The model
A multiclass softmax classifier is a supervised learning algorithm that can handlemultiple classes. It assigns a probability to each class based on the input featuresand the learned parameters. The input variables may be float, binary, or integervalues and the output variables must be categorical variables or class labels. Cat-egorical variables or class labels in multiclass problem setting are usually encodedusing one-hot vectors. A one-hot vector is a vector that has only one element witha value of 1 and the rest are 0. For example, if there are three classes A, B, C andD, we can use the following one-hot vectors to represent them:

A: [1, 0, 0]B: [0, 1, 0]C: [0, 0, 1]
The advantage of using one-hot vectors is that they can be easily used with modelsthat output probabilities for each class.

1It is known as the softmax [22] or maximum entropy classifier [23]

DRAFT6.1. THE MODEL 67

If the input has 4 dimensions or variables and the output has 3 classes, then therelation between the inputs and outputs in the model will look like this:z1 = w11x1 +w12x2 +w13x3 +w14x4 + b1z2 = w21x1 +w22x2 +w23x3 +w24x4 + b2z3 = w31x1 +w32x2 +w33x3 +w34x4 + b3
(6.1)

where each output is connected to all inputs as shown in Figure 6.1. Hence, Equation(6.1) represents a fully connected or dense network. Equation (6.1) can be writtenin matrix form as well:z1z2z3
 =


w11 w12 w13 w14w21 w22 w23 w24w31 w32 w33 w34w41 w42 w43 w44



x1x2x3x4
 + b1b2b3

 (6.2)

Figure 6.1: Multiclass classification network that has an input with 4 nodes orvariables and the output has 3 nodes or classes.Generally, softmax regression single-layer network can be written as:
z = Wx + b (6.3)

y = softmax(z) (6.4)and the elements of the softmax yi are given by
yi = ezi∑Kc=1 ezc for i = 1, . . . , K (6.5)

DRAFT6.2. LEARNING PROBLEM 68

where y ∈ RK is a vector of output classes or variables (the softmax transform isa normalized function, meaning that all elements of the output vector y are in therange (0, 1) and sum up to 1), x ∈ Rd is a vector of input variables (each variableis a feature), W ∈ RK×d and b ∈ RK is a bias vector. The W and b are calledparameters and they are estimated during the training phase using the trainingdata.Finding the optimal values for W and b using the training data is the subject of thenext section.
6.2 Learning problem
Given a training data (x1, t1), (x2, t2), . . . , (xN , tN), the goal of the learning algorithmis to estimate the values of the W and b where x ∈ Rd and t is a one-hot vectorof length K can be mathematically denoted as an element of the set 0, 1K that hasexactly one element equal to 1 and the rest equal to 0. In supervised learningsettings, we define an objective function to measure how close the t to its predictedvalue y over all the training data N . Concretely, we define E as follows:

En(W, b) = − K∑
k=1 tnk logynk (6.6)

and E (W, b) = 1N N∑
n=1 En (6.7)

where E is known as categorical cross-entropy loss function and n is an index for thetraining sample (xn, tn). Since y is a float vector (its elements float between 0 and 1),the categorical cross-entropy loss function is a suitable objective function for softmaxregression. In order to estimate the values of W and b parameters, we minimize theloss function with respect to the parameters. The loss function measures how wellthe softmax model fits the data, and the parameters are the coefficients and biasesof the model. By minimizing the loss function, we can find the optimal values ofthe parameters that make the best predictions for the output classed. The softmaxregression model with the categorical cross-entropy loss function has a uniquesolution2.In order to derive the gradient of the objective function with respect to the parametersof the softmax classifier, we will need the derivative of the softmax function withrespect to its inputs. The gradient of softmax with respect to its inputs is a matrix
2It can not be found analytically.

DRAFT6.2. LEARNING PROBLEM 69

known as the Jacobian matrix3. It is KxK matrix and it is given by:
∂y1∂z1 ∂y1∂z2 ∂y1∂z3 · · · ∂y1∂zK∂y2∂z1 ∂y2∂z2 ∂y2∂z3 · · · ∂y2∂zK...∂yK∂z1 ∂yK∂z2 ∂yK∂z3 · · · ∂yK∂zK

 (6.8)
When k = i (i.e. diagonal elements of the matrix):∂yk∂zi = ezi∑j ezj − ezkezi(∑j ezj)2

= ezi∑j ezj
∑j ezj − ezk∑j ezj= yi(1− yk)= yi − yiyk

(6.9)

and when k ̸= i: ∂yk∂zi = −eziezk(∑j ezj)2 = − ezi∑j ezj ezk∑j ezj = −yiyk (6.10)
Hence, the two equations can be combined into one equation:∂yk∂zi = yi(δik − yk) (6.11)
where Kronecker delta δik is defined as follows:

δik = {0 when i ̸= k1 when i = k (6.12)
It can be written using two separate matrices:

∂y∂z =

y1 0 0 · · · 00 y2 0 · · · 0...0 0 0 · · · yK

−

y1y1 y1y2 y1y3 · · · y1yKy2y1 y2y2 y2y3 · · · y2yK...yKy1 yKy2 yKy3 · · · yKyK

 (6.13)
Using Equation (6.11), the

En(W, b) = − K∑
k=1 tnk logynk (6.14)

3The softmax function is a vector and differentiating a vector with respect to a vector of parametersgenerates a matrix.

DRAFT6.3. CLASSIFICATION DECISION 70

∂E (W, b)∂wij = − 1N N∑
n=1

K∑
k=1

∂En(W, b)∂ynk ∂ynk∂zni ∂zni∂wij
= − 1N N∑

n=1
(K∑
k=1

tnkynk yni (δik − ynk)
)xnj

= 1N N∑
n=1
(K∑
k=1

tnkynk yni (ynk − δik)
)xnj

= 1N N∑
n=1
(yni K∑

k=1 tnk − yni
K∑
k=1

tnkynk δik
)xnj

= 1N N∑
n=1
(yni − tni)xnj ,

(6.15)

where ∑Kk=1 tnk = 1.0. Similarly, the gradient of the cross-entropy loss function withrespect to the bias bi:
∂E (W, b)∂bi = 1N N∑

n=1
(yni − tni) (6.16)

Using the gradient descent, the vector of the weights and the bias term can beupdated as follows:
wt+1ij = wtij − η 1N N∑

n=1(yni − tni)xnj
bt+1i = bti − η 1N N∑

n=1(yni − tni)
(6.17)

where η is the learning rate. Using mini-batch stochastic gradient descent, it ispossible to learn the parameters efficiently for large datasets. The algorithm is verysimilar to the one described in section 4.2.1.
6.3 Classification decision
The output of the learning algorithm is to estimate the values of the W and bparameters. Hence, they can be used at the test time for prediction. The class withthe highest probability is the predicted class. To find this winner class ŷ for a given

DRAFT6.3. CLASSIFICATION DECISION 71

sample: ŷ = arg max1≤k≤K (yk)= arg max1≤k≤K (zk) (6.18)
The softmax classifier separates the classes with linear decision boundaries. To findthe decision boundary for two-dimensional data with three classes, let:

z1 = w11x1 +w12x2 + b1z2 = w21x1 +w22x2 + b2z3 = w31x1 +w32x2 + b3
(6.19)

We have three decision boundaries between classes 1 and 2, 1 and 3, and 2 and 3.The linear decision boundary between classes 1 and 2 must satisfy:
w11x1 +w12x2 + b1 = w21x1 +w22x2 + b2 (6.20)

then (w11 −w21)x1 + (w12 −w22)x2 = b2 − b1 (6.21)For example, the decision boundaries are shown in Figure 6.2 (details in the nextsection).

Figure 6.2: The decision boundaries between three classes for the two-dimensionaldata.

DR
AF

T

6.4. EXAMPLE 72

6.4 Example
A Python code is provided to illustrate the learning algorithm of the softmax classifierand plot the decision boundaries between three classes:

12 import numpy as np3 import matplotlib . pyplot as plt45 def softmax (x):6 x = x - np.max(x, axis =1, keepdims =True)7 exp_x = np.exp(x)8 return exp_x / np.sum(exp_x , axis =1, keepdims =True)910 def cross_entropy (y_true , y_pred):11 y_pred = np.clip(y_pred , 1e-12, 1 - 1e -12)12 return -np.mean(np.sum(y_true * np.log(y_pred), axis =1))1314 def gradient_descent (X, y_true , y_pred , w, b, learning_rate):15 m = X.shape [0]16 dw = (1/m) * np.dot(X.T, (y_pred - y_true))17 db = (1/m) * np.sum(y_pred - y_true , axis =0)18 w = w - learning_rate * dw19 b = b - learning_rate * db20 return w, b2122 np. random .seed (42)23 X0 = np. random . multivariate_normal (mean =[0, 0], cov =[[1 , 0], [0,
1]], size =100)24 y0 = np.array ([[1 , 0, 0]] * 100)25 X1 = np. random . multivariate_normal (mean =[3, 3], cov =[[1 , 0], [0,
1]], size =100)26 y1 = np.array ([[0 , 1, 0]] * 100)27 X2 = np. random . multivariate_normal (mean =[-3, 3], cov =[[1 , 0], [0,
1]], size =100)28 y2 = np.array ([[0 , 0, 1]] * 100)2930 X = np. concatenate ((X0 , X1 , X2), axis =0)31 y_true = np. concatenate ((y0 , y1 , y2), axis =0)3233 w = np. random .randn (2, 3)34 b = np. random .randn (3)3536 epochs = 10037 learning_rate = 0.013839 for epoch in range(epochs):40 y_pred = softmax (np.dot(X, w) + b)41 loss = cross_entropy (y_true , y_pred)42 if epoch % 10 == 0:

DRAFT6.5. ASSIGNMENT 73

43 print(f"Epoch {epoch}, Loss: {loss :.4f}")44 w, b = gradient_descent (X, y_true , y_pred , w, b, learning_rate)4546 # Plotting the decision boundaries47 x_min = X[:, 0]. min () - 148 x_max = X[:, 0]. max () + 149 y_min = X[:, 1]. min () - 150 y_max = X[:, 1]. max () + 15152 xx , yy = np. meshgrid (np. arange (x_min ,x_max ,.01) ,np. arange (y_min ,
y_max ,.01))53 Z=np. argmax (softmax (np.dot(np.c_[xx.ravel (), yy.ravel ()], w) + b),
axis =1). reshape (xx.shape)5455 plt. contourf (xx ,yy ,Z ,alpha =.5)5657 plt. scatter (X[:,0],X[:,1],c=np. argmax (y_true ,axis =1) , cmap=plt.cm.
Spectral)58 plt. xlabel ("x_1")59 plt. ylabel ("x_2")6061 plt.show ()62 plt. savefig (" softmax_classifier .png", dpi =600)Listing 6.1: Python example for plotting the softmax decision boundaries for threeclasses problem.

Since softmax regression has a unique solution, running the script several times willlead to the same result.
6.5 Assignment
Implement an optical recognition of handwritten digits (multiclass classification task)using the Keras deep learning library and Google colab. To load the dataset, pleasevisit https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+
Digits.

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

DRAFT
74

DRAFT7.1. MODEL 75

7. Multilabel Classification
Networks

Multilabel classification is aclassification task where each inputsample can be assigned multiplelabels. For instance, a given imagemay contain both a cat and a dogand should be annotated both withthe “cat” label and the “dog” label.— François Chollet
In this chapter, we introduce the multilabel classification algorithm where eachinstance can belong to more than one class at the same time. For example, adocument can have multiple topics, such as politics, religion, and education. Themultilabel classification is different from the multiclass classification where eachdata point or instance must belong to one class only.
7.1 Model
Multilabel classification is a variant of the classification problem where multiplenonexclusive labels may be assigned to each instance. For example, suppose youwant to classify a movie based on its genres. A movie can belong to more than onegenre, such as comedy, romance, and action. In this case, the input is the movieand the output is a set of genres that describe the movie (three genre in total). Forexample, a movie that is only comedy would have an output of:

t = [1 0 0]
A movie that is both romance and action would have an output of:

t = [0 1 1]
A movie that has no genres would have an output of:

DRAFT7.1. MODEL 76

t = [0 0 0]This output is called a multi-hot vector, where each element corresponds to a labeland has a value of 0 or 1 depending on whether the label is present or not. A moviecan have any combination of genres, so there are 23 = 8 possible outputs for thisproblem.One way to approach this problem is to transform it into binary classification prob-lems, where each label is predicted independently by a binary logistic regressionclassifier. The target of such classifiers can be represented as a multi-hot vector,where each element corresponds to a label and has a value of 0 or 1 depending onwhether the label is predicted or not. The model can be written as:
y = [y1 y2 ... yL]= [σ (wT1 x + b1) σ (wT2 x + b2) ... σ (wTL x + bL)] (7.1)

where σ is the sigmoid function, x is the input vector, wi and bi are the weightvector and bias term for the i-th label, L is the number of labels. An example ofmultilabel network is shown in Figure 7.1.

Figure 7.1: Multilabel classification network that has an input with 4 nodes orvariables and the output has 3 nodes or classes.

DRAFT7.2. LEARNING PROBLEM 77

7.2 Learning problem
The objective function for multilabel classification should be the summation of thebinary cross-entropy losses for each label. Binary cross-entropy is a special case ofcategorical cross-entropy where the target is 0 or 1. It measures how well a modelpredicts a binary outcome. The binary cross-entropy loss for a single label can bewritten as:

E (t, y) = −t log(y)− (1− t) log(1− y) (7.2)where t is the true label (0 or 1) and y is the predicted probability (between 0 and1).The objective function for multilabel classification can be obtained by summing thebinary cross-entropy losses for each label:
E (t, y) = − L∑

i=1 [ti log(yi) + (1− ti) log(1− yi)] (7.3)
where L is the number of labels, t is the true multi-hot vector, and y is the predictedprobability vector.This objective function can be used to train a multilabel classifier by minimizingit with respect to the model parameters (see Chapter 5 for details about gradientcomputation).A summary of the learning problems discussed so far is shown in the following table:

Model linear
regression

binary
classification

multiclass
classification

multilabel
classification

activation linear sigmoid softmax sigmoid
of output nodes K ≥ 1 K=1 K ≥ 3 K ≥ 2
objective function meansquare error binarycross entropy categoricalcross entropy K binarycross entropy

Table 7.1: A summary for the learning algorithms.
7.3 Evaluation
Micro F1-score is an evaluation metric for multilabel classification that provides aharmonic mean of precision and recall across all labels, focusing on the aggregateperformance rather than individual label performance. In multilabel settings, wecompute this by treating each true positive, false positive, and false negative across

DRAFT7.3. EVALUATION 78

all classes as one combined group, which helps to account for class imbalance andgives an overall sense of model performance.Let us define the following:
• True Positives (TP): The number of times a label is correctly predicted aspresent in the instance.
• False Positives (FP): The number of times a label is incorrectly predicted aspresent.
• False Negatives (FN): The number of times a label is incorrectly predicted asabsent.

For a set of labels {1, 2, . . . , L} across N samples, we calculate micro precision,recall, and F1 as follows:The micro precision Pmicro is defined as:
Pmicro = ∑Ll=1 TPl∑Ll=1(TPl + FPl) , (7.4)

where ∑Ll=1 TPl represents the total true positives across all labels, and ∑Ll=1(TPl+FPl) represents the total predicted positives.Similarly, the micro recall Rmicro is:
Rmicro = ∑Ll=1 TPl∑Ll=1(TPl + FNl) , (7.5)

where ∑Ll=1(TPl + FNl) is the total actual positives.The micro F1 score is the harmonic mean of Pmicro and Rmicro:
F1micro = 2 · Pmicro · RmicroPmicro + Rmicro (7.6)

Since micro precision and micro recall are computed over all instances and labelstogether, this score emphasizes the classifier’s global effectiveness rather than howit performs on individual labels.Consider a scenario with three labels L = 3 across four instances N = 4. Wesummarize the true positives, false positives, and false negatives in a table:
Label TP FP FN1 10 5 32 20 4 63 15 3 7

DRAFT7.3. EVALUATION 79

1. Calculate Micro Precision:
Pmicro = 10 + 20 + 15(10 + 20 + 15) + (5 + 4 + 3) = 4545 + 12 = 4557 ≈ 0.789

2. Calculate Micro Recall:
Rmicro = 10 + 20 + 15(10 + 20 + 15) + (3 + 6 + 7) = 4545 + 16 = 4561 ≈ 0.738

3. Calculate Micro F1 Score:
F1micro = 2 · 0.789 · 0.7380.789 + 0.738 ≈ 2 · 0.5821.527 ≈ 0.762

Micro F1 gives each true/false positive and negative an equal contribution, whichis particularly useful when labels have different frequencies. Hence, Micro F1 isespecially helpful when the goal is to evaluate how well a model performs acrossall predictions, rather than for each individual label, in a multilabel setting.
7.3.1 Decision Boundary Threshold TuningFor binary classifiers in a multilabel setup, the default decision boundary (typically0.5) might not optimize Micro F1 performance for each label. Threshold tuning allowsadjusting this decision boundary for each label, maximizing specific performancemetrics like Micro F1 score. By tuning thresholds, we adapt the sensitivity of themodel for each label based on the data distribution and the specific needs of theapplication.For a binary classifier outputting scores sl for label l, the predicted label is definedas:

ŷl = {1 if sl ≥ τl,0 if sl < τl, (7.7)
where τl is the decision threshold for label l, which can be tuned based on the goalof maximizing F1, precision, or recall for that specific label. Tuning these thresh-olds allows balancing between false positives and false negatives across labels,significantly impacting overall F1 performance.For a set of thresholds {τ1, τ2, . . . , τL} applied across all L labels, tuning can beperformed using methods like grid search, where multiple threshold values are eval-uated to maximize the desired metric (often F1). Instead of assigning a separatethreshold for each label, using a single global threshold could serve as an alterna-tive.

DR
AF

T

7.4. EXAMPLE 80

7.3.2 Macro F1-ScoreAn alternative metric to consider is Macro F1-Score which offers a complementaryapproach by averaging the F1 scores computed for each label individually. In a mul-tilabel setup, this approach treats each label equally, irrespective of its frequency,which can provide a balanced view of model performance across all labels.Given individual precision Pl and recall Rl for each label l, the F1-score for eachlabel is:
F1l = 2 · Pl · RlPl + Rl (7.8)

The Macro F1-Score, F1macro, is the average of these per-label F1 scores:
F1macro = 1L L∑

l=1 F1l, (7.9)
where the Macro Precision Pmacro:

Pmacro = 1L L∑
l=1 Pl = 1L L∑

l=1
TPlTPl + FPl , (7.10)

and Macro Recall Rmacro:
Rmacro = 1L L∑

l=1 Rl = 1L L∑
l=1

TPlTPl + FNl (7.11)
Finally, the Micro F1 is heavily influenced by the performance on frequently occur-ring labels, as it treats all TP, FP, and FN equally across labels. On the other hand,the Macro F1 treats each label independently, providing an average score acrosslabels, beneficial when classes are imbalanced or certain labels are sparse.Together, these metrics and threshold tuning provide a comprehensive evaluationstrategy for multilabel classification, enhancing model generalization and adapt-ability to specific goals, whether precision-oriented or recall-oriented, within themultilabel context.
7.4 Example
A Python code is provided to illustrate the learning algorithm of the multilabelclassifier for three classes:

12 import numpy as np3

DR
AF

T

7.4. EXAMPLE 81

4 def sigmoid (x):5 return 1 / (1 + np.exp(-x))67 def sigmoid_derivative (x):8 return x * (1 - x)910 class LinearNN :11 def __init__ (self , n_inputs , n_outputs):12 self. weights = np. random .rand(n_inputs , n_outputs)13 self.bias = np. random .rand(n_outputs)1415 def train(self , X, T, epochs , lr):16 for epoch in range(epochs):17 # forward propagation18 y_pred = self. predict (X)1920 # compute gradient21 d_weights = np.dot(X.T, (y_pred - T) *
sigmoid_derivative (y_pred))22 d_bias = np.sum ((y_pred - T) * sigmoid_derivative (y_pred
), axis =0)2324 # update weights and bias25 self. weights -= lr * d_weights26 self.bias -= lr * d_bias2728 if epoch % 100 == 0:29 loss = np.mean(-T*np.log(y_pred) - (1-T)*np.log (1-
y_pred))30 print(f’Loss at epoch {epoch }: {loss}’)3132 def predict (self , X):33 return sigmoid (np.dot(X, self. weights) + self.bias)3435 if __name__ == " __main__ ":36 X = np.array ([[0 , 0, 1],37 [0, 1, 1],38 [1, 0, 1],39 [1, 1, 1]])40 T = np.array ([[0 , 0, 1],41 [1, 0, 0],42 [0, 1, 0],43 [1, 1, 1]])4445 model = LinearNN (X.shape [1], T.shape [1])46 model.train(X, T, epochs =1000000 , lr =0.001)4748 print("Model weights :")49 print(model. weights)50 print("Model biases :")

DRAFT7.5. ASSIGNMENT 82

51 print(model.bias)52 print(" Predictions on training data:")53 print(np.round(model. predict (X)))Listing 7.1: Python example for mutlilabel classifier. The classifier has three outputclasses.
7.5 Assignment
Implement a multilabel classification model using the Keras deep learning libraryand Google colab. To load the dataset, please visit https://www.kaggle.com/
datasets/shivanandmn/multilabel-classification-dataset.

https://www.kaggle.com/datasets/shivanandmn/multilabel-classification-dataset
https://www.kaggle.com/datasets/shivanandmn/multilabel-classification-dataset

DRAFT
83

DRAFT8.1. MOTIVATION 84

8. Deep Neural Networks

I have never claimed that I inventedbackpropagation. David Rumelhartinvented it independently long afterpeople in other fields had inventedit. It is true that when we firstpublished we did not know thehistory so there were previousinventors that we failed to cite.What I have claimed is that I wasthe person to clearly demonstratethat backpropagation could learninteresting internal representationsand that this is what made itpopular. — Geoffrey E. Hinton
8.1 Motivation
Deep neural networks are composed of multiple layers of neurons that can learncomplex patterns and features from the input data. However, if each layer of neuronsuses a linear activation function, such as g(z) = x, then the output of the networkwill be just a linear combination of the inputs, regardless of how many layers thereare. Assume a network with L layers and the output layer is a regression problem,then the output of the network is given byy = W LW L−1 . . .W 1x= Wx (8.1)
This means that the network will not be able to capture any non-linear relationshipsor interactions among the input variables, and will fail to model complex phenomenathat do not follow linearity.

DRAFT8.1. MOTIVATION 85

Table 8.1: Two-dimensional XOR gate truth table.x1 x2 t0 0 00 1 11 0 11 1 0
To overcome this limitation, we use non-linear activation functions, such as sigmoid,tanh, relu, etc. (see Figure 8.1), that can introduce non-linearity into the network.y = W Lg(W L−1 . . . g(W 2g(W 1x + b1) + b2) + bL−1) + bL (8.2)Non-linear activation functions can map the input to a different range or domain,such as (0, 1) for sigmoid or (-1, 1) for tanh, and can create non-linear decisionboundaries via non-linear combinations of the weights and inputs. Non-linear acti-vation functions can also help the network to avoid saturation or vanishing gradients,which are problems that occur when the derivative of the activation function becomesvery small or zero, and prevent the network from learning effectively.By using non-linear activation functions in deep neural networks, we can enable thenetwork to learn more expressive and powerful representations of the input data,and to approximate any continuous function

Figure 8.1: Three different activation functions commonly used in deep networks.
One of the functions that can not be solved using linear decision boundaries is theXOR gate that is used in design logic (see Table 8.1). If there is a linear decisionboundary can solve the XOR problem, then its equation should be given byx1w1 + x2w2 ≶10 θ (8.3)where θ is a threshold. Since the points (1, 0) and (0, 1) lie on the same side ofdecision boundary, then w1 > θw2 > θ (8.4)

DRAFT8.2. MODEL 86

on the other hand, the point (1, 1) lies on the other side of decision boundary:w1 +w2 < θ (8.5)which is a contradiction of Equation (8.4). Hence, such a linear decision boundarydoes not exist. This means that there is no single line that can separate the fourpoints that represent the XOR table into two classes. Hence, the XOR problem cannot be solved using linear networks. To solve the XOR problem, a non-linear neuralnetwork with at least one hidden layer is needed.The output layer is the final layer in the network where the desired predictions areobtained. Depending on the type and goal of the task, the output layer can havedifferent activation functions and loss functions.For example, if the task is a regression problem, where the output is a continuousvalue, such as predicting the price of a house, then the output layer can have alinear activation function, such as g(x) = x, and a mean squared error loss function,which measures the difference between the predicted and actual values.If the task is a binary classification problem, where the output is either 0 or 1,such as predicting whether an email is spam or not, then the output layer canhave a sigmoid activation function, such as g(x) = 1/(1 + exp(−x)), and a binarycross-entropy loss function, which measures the probability of the correct class.If the task is a multi-class classification problem, where the output is one of severalpossible classes, such as predicting the type of animal in an image, then the outputlayer can have a softmax activation function, such as g(x) = exp(x)/∑(exp(x)), anda categorical cross-entropy loss function, which measures the probability of thecorrect class. An example of a deep neural network (DNN) is shown in Figure 8.2.By having a flexible output layer, deep neural networks can adapt to different typesof tasks and produce accurate and meaningful predictions.
8.2 Model
Consider a neural network model with two hidden layers and an output layer. Theactivation function for all layers, including the output layer, is the sigmoid function,ideal for a multi-class classification problem with K classes.Let’s denote:

• x : Input data vector.• W [1],W [2],W [3]: Weight matrices for Hidden Layer 1, Hidden Layer 2, andOutput Layer, respectively.• b[1], b[2], b[3]: Bias vectors for the corresponding layers.• z [l] = W [l]a[l−1] + b[l]: Linear transformation for each layer l.

DRAFT8.2. MODEL 87

Figure 8.2: A deep neural network consists of 2 hidden layers (each layer has 3nodes) with non-linear activation such as sigmoid function. The output layer has 3nodes and a softmax activation to support a multi-class classification problem. Theinput layer has 4 nodes. The parameters – Please note the index of weight matricesand biases were removed in the figure for simplicity.– are the weights W [3],W [2],W [1]and the biases b[3], b[2], b[1].

DRAFT8.3. LEARNING VIA BACKPROPAGATION 88

• a[l] = sigmoid(z [l]): Sigmoid activation for each hidden layer.• a[L] = softmax(z [l]): Softmax activation for the output layer.
8.3 Learning via Backpropagation
The backpropagation algorithm is fundamental for training artificial neural networks,and particularly deep learning networks. It is responsible for optimizing the weightsin the network by computing gradients, allowing the network to learn from the errormade during prediction.The algorithm is based on a simple principle: it feeds input data forward through thenetwork, computes the error by comparing the predicted and actual outputs, and thenpropagates this error backward through the network, adjusting the weights alongthe way. This iterative process is performed over multiple epochs and effectivelytrains the network.
8.3.1 Forward PropagationFirst, we perform forward propagation to compute the activations for each layer:1. Hidden Layer 1:

z [1] = W [1]x + b[1]
a[1] = sigmoid(z [1])

2. Hidden Layer 2:
z [2] = W [2]a[1] + b[2]
a[2] = sigmoid(z [2])

3. Output Layer:
z [3] = W [3]a[2] + b[3]
a[3] = softmax(z [3])

8.3.2 Backward PropagationNext, we compute the gradients and propagate them back through the network:The output layer uses the softmax activation function. We can write the softmaxactivation function as:
a[3]i = ez [3]i∑Kj=1 ez [3]j (8.6)

DRAFT8.3. LEARNING VIA BACKPROPAGATION 89

Where the denominator sums over all K classes.The cost function is cross-entropy loss, which we can write as:
E = − K∑

i=1 ti loga[3]i (8.7)
Where the sum goes over all K classes.Based on equation (6.15), the gradients are give by:

∂E∂z = ∂a∂z ∂E∂a (8.8).
∂E∂a =

−t1/a1...−tn/an
 =


0...−1/aj...0

 (8.9)
where j is the index of the correct class. In addition, ∂a∂z is given by

∂a∂z =

a1 0 0 · · · 00 a2 0 · · · 0...0 0 0 · · · aK

−

a1a1 a1a2 a1a3 · · · a1aKa2a1 a2a2 a2a3 · · · a2aK...aKa1 aKa2 aKa3 · · · aKaK

 (8.10)
Hence,

∂E∂z = 1aj [

a1aj...ajaj...aKaj

−


0...aj...0

] = a − t (8.11)
1. Output Layer:

δ [3] = a[3] − t (8.12)∂E∂W [3] = δ [3](a[2])T (8.13)∂E∂b[3] = δ [3] (8.14)

DRAFT8.3. LEARNING VIA BACKPROPAGATION 90

2. Hidden Layer 2:
δ [2] = (W [3])T δ [3] ◦ a[2] ◦ (1− a[2]) (8.15)∂E∂W [2] = δ [2](a[1])T (8.16)∂E∂b[2] = δ [2] (8.17)

3. Hidden Layer 1:
δ [1] = (W [2])T δ [2] ◦ a[1] ◦ (1− a[1]) (8.18)∂E∂W [1] = δ [1]xT (8.19)∂E∂b[1] = δ [1] (8.20)

Here, ◦ denotes element-wise multiplication, which is also known as the Hadamardproduct. Note that these updates are performed after each iteration or epoch.Finally, the weights and biases are updated using gradient descent:
W [l] = W [l] − η 1N N∑

n=1
∂En∂W [l] , (8.21)

b[l] = b[l] − η 1N N∑
n=1

∂En∂b[l] , (8.22)
where η is the learning rate.This process is repeated for multiple epochs until the network is adequately trained.The delta term δ [l] represents the error or gradient of the loss function with respectto the pre-activation value z [l] of layer l, i.e.,

δ [l] = ∂E∂z [l] (8.23)
The exact computation of δ differs based on the layer. For the output layer (layer3):We use the chain rule of calculus,

δ [3] = ∂E∂z [3] = ∂E∂a[3] · ∂a[3]∂z [3] (8.24)
δ [3] = a[3] − t

DRAFT8.3. LEARNING VIA BACKPROPAGATION 91

For the hidden layer 2, the delta term is computed using the delta term of the nextlayer (output layer) and the weight matrix that connects them. This is becausethe loss function depends on z [2] indirectly through z [3]. The derivative of the lossfunction with respect to z [2] is:
∂E∂z [2] = ∂E∂z [3] ∂z [3]∂z [2] = ∂E∂z [3] ∂z [3]∂a[2] ∂a[2]∂z [2] (8.25)

Using the fact that z [3] = W [3]a[2] + b[3], where W [3] and b[3] are the weight matrixand bias vector of layer 3, respectively, and applying the chain rule, we get:
∂E∂z [2] = ∂E∂z [3] ∂(W [3]a[2] + b[3])∂z [2] (8.26)

The derivative of (W [3]a[2] +b[3]) with respect to z [2] is simply W [3], since a[2] dependson z [2] and b[3] does not. Therefore, we can simplify the expression as:
∂E∂z [2] = ∂E∂z [3]W [3]∂a[2]∂z [2] (8.27)

Using the fact that ∂E∂z [3] = δ [3], we can write this in vector form as:
δ [2] = (W [3])T δ [3]∂a[2]∂z [2] (8.28)

Recall that a[2] = g(z [2]), where g is the activation function of layer 2. Hence, weneed to multiply δ [2] by the derivative of g with respect to z [2], which is denoted byg′(z [2]). This gives us:
δ [2] = (W [3])T δ [3] ◦ g′(z [2]) (8.29)where ◦ denotes element-wise multiplication, also known as the Hadamard product.If we assume that g is a sigmoid function, such as g(z) = 11+e−z , then g′(z) =g(z)(1− g(z)), and we can simplify the expression as:

δ [2] = (W [3])T δ [3] ◦ a[2] ◦ (1− a[2]) (8.30)For the hidden layer 1, the delta term is computed in a similar way as for hiddenlayer 2, using the delta term of the next layer (hidden layer 2) and the weight matrixthat connects them.The back-propagation algorithm is illustrated in Figure 8.3.

DR
AF

T

8.4. EXAMPLE 92

Figure 8.3: The back-propagation algorithm.
8.4 Example
A Python code is provided to illustrate the learning algorithm of the XOR problemand plot the decision boundary between the two classes:

12 import numpy as np3 import matplotlib . pyplot as plt45 def sigmoid (x):6 return 1 / (1 + np.exp(-x))78 def sigmoid_derivative (x):9 return x * (1 - x)1011 # XOR input12 X = np.array ([[0 ,0] , [0,1], [1,0], [1 ,1]])13 # XOR output14 Y = np.array ([[0] ,[1] ,[1] ,[0]])1516 np. random .seed (0)

DRAFT8.4. EXAMPLE 93

1718 # initialize weights and biases randomly with mean 019 w0 = 2*np. random . random ((2 ,4)) - 120 b0 = 2*np. random . random ((1 ,4)) - 121 w1 = 2*np. random . random ((4 ,1)) - 122 b1 = 2*np. random . random ((1 ,1)) - 12324 # Learning rate25 lr = 0.126 # Number of iterations27 epochs = 100002829 for epoch in range(epochs):30 # Forward propagation31 l0 = X32 l1 = sigmoid (np.dot(l0 , w0) + b0)33 l2 = sigmoid (np.dot(l1 , w1) + b1)3435 # Backward propagation36 l2_error = Y - l237 l2_delta = l2_error * sigmoid_derivative (l2)3839 l1_error = l2_delta .dot(w1.T)40 l1_delta = l1_error * sigmoid_derivative (l1)4142 # Update weights and biases43 w1 += l1.T.dot(l2_delta) * lr44 b1 += np.sum(l2_delta , axis =0, keepdims =True) * lr45 w0 += l0.T.dot(l1_delta) * lr46 b0 += np.sum(l1_delta , axis =0, keepdims =True) * lr4748 # Plot decision boundary49 h = 0.0150 x_min , x_max = X[:, 0]. min () - 0.5, X[:, 0]. max () + 0.551 y_min , y_max = X[:, 1]. min () - 0.5, X[:, 1]. max () + 0.552 xx , yy = np. meshgrid (np. arange (x_min , x_max , h), np. arange (y_min ,
y_max , h))5354 l0 = np.c_[xx.ravel (), yy.ravel ()]55 l1 = sigmoid (np.dot(l0 , w0) + b0)56 l2 = sigmoid (np.dot(l1 , w1) + b1)5758 # threshold the output59 Z = (l2 > 0.5). astype (int)6061 Z = Z. reshape (xx.shape)62 plt. contourf (xx , yy , Z, cmap=plt.cm. Spectral)63 plt. scatter (X[:, 0], X[:, 1], c=Y[:, 0], cmap=plt.cm. Spectral)64

DRAFT8.5. ASSIGNMENT 94

65 plt. savefig (’xor_decision_boundary .png ’, dpi =600)Listing 8.1: Python example for plotting the XOR decision boundary.
In Figure 8.4, the 2D plot for the XOR problem results in a decision boundary thatseparates the space into four regions. Depending on how the network learns, theshape of the boundary may vary, but it will always be able to separate [0, 0] and [1,1] from [0, 1] and [1, 0].

Figure 8.4: The decision boundaries between two classes for the two-dimensionaldata XOR problem.
8.5 Assignment
Implement an optical recognition of handwritten digits (multiclass classification task)using deep neural networks. The Keras deep learning library and Google colab canbe used for this task. To load the dataset, please visit https://archive.ics.uci.
edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits.

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

DRAFT
95

DRAFT9.1. MOTIVATION 96

9. Convolutional Networks

Deep Learning (DL) is far, far morethan old-style neural nets withmore than a couple of layers. DL isan "architectural language" withenormous flexibility. The bestiary ofDL architectural elements hasdiversified tremendously over thelast decade. — Yann LeCun
Convolutional Networks or Convolutional Neural Networks (CNNs) are a class ofdeep learning models designed for processing and analyzing structured grid data,such as images and videos. CNNs have proven to be highly effective in variouscomputer vision tasks due to their ability to automatically learn hierarchical rep-resentations of features directly from the data. In this chapter, we will introduceCNNs and address their usage to extract salient features automatically from imageswithout using feature engineering approaches.
9.1 Motivation
The shift from Feed-Forward Networks (FFNs) to Convolutional Neural Networks(CNNs) in the context of image processing is driven by several key advantages thatCNNs offer over FFNs. Here’s an overview of the motivations and benefits:1. Handling high dimensionality: FFNs treat each pixel in an image as a separateinput feature, resulting in a very high-dimensional input space. For instance, asmall image of 64x64 pixels with three color channels (RGB) has 12,288 inputfeatures. This high dimensionality leads to a large number of parameters,making the network computationally expensive and prone to overfitting. CNNsutilize local receptive fields (filters) that process small regions of the imageat a time. This significantly reduces the number of parameters as the same

DRAFT9.1. MOTIVATION 97

filter is applied across different regions of the image. By focusing on localpatterns and reusing parameters, CNNs handle high-dimensional data moreefficiently.
2. Parameter sharing: FFNs use separate parameters for each input feature,leading to a large number of unique parameters. This lack of parameter shar-ing results in high computational and memory requirements. CNNs employthe concept of parameter sharing, where the same filter is used across dif-ferent parts of the image. This reduces the number of unique parametersand enhances computational efficiency. Parameter sharing also allows CNNsto detect features regardless of their position in the image, contributing totranslation invariance.
3. Translation invariance: FFNs do not have an inherent mechanism to recognizepatterns irrespective of their spatial location in the image. This means thatthe same object in different positions would be treated as different inputs,requiring more training data to learn positional variations. The shared filtersin CNNs enable the network to recognize features regardless of their locationin the image. This translation invariance allows CNNs to generalize betterand recognize objects in varying positions.
4. Hierarchical feature learning: FFNs treat all input features equally and donot inherently capture hierarchical patterns in the data. This makes it chal-lenging to learn complex structures and relationships within the image. CNNslearn hierarchical features, where early layers capture low-level features (e.g.,edges, textures) and deeper layers capture high-level features (e.g., shapes,objects). This hierarchical learning mimics the human visual system and en-ables CNNs to build more abstract and meaningful representations of theinput data.
5. Dimensionality reduction through pooling: FFNs do not have a built-in mech-anism for reducing the dimensionality of the input data, often leading to anoverwhelming number of parameters. CNNs use pooling layers (e.g., maxpooling, average pooling) to downsample the feature maps, reducing their di-mensionality while retaining important information. - Pooling layers help inreducing computational complexity and making the network more robust tospatial variations and noise.

CNNs have achieved state-of-the-art performance in various image recognitionbenchmarks and competitions (e.g., ImageNet). They require less manual featureengineering as they can learn features directly from raw image data, leading tomore accurate and efficient models. In the upcoming sections, we will present an

DRAFT9.2. CONVOLUTIONS 98

overview of the convolution operation, the pooling operation, and the learning prob-lem associated with convolutional neural networks (CNNs).
9.2 Convolutions

9.2.1 DefinitionIn one dimension, convolution is a mathematical operation that combines two func-tions to produce a third function. The convolution of two functions x(t) and w(t) isdenoted as (x ∗ w)(t) and is defined by the integral:
(x ∗ w)(t) = ∫ ∞−∞ x(τ) · w(t − τ)dτ (9.1)

Alternatively, for discrete signals, the convolution of two sequences x [n] and w [n] isdefined as:
(x ∗ w)[n] = ∞∑

k=−∞ x [k] · w [n − k] (9.2)
In simpler terms, for each point t or n, you multiply the values of the two functionsat different points and sum up these products over all possible points. This processis repeated for each point in the range of t or n to obtain the resulting convolutionfunction or sequence.Convolution is a fundamental operation in signal processing and plays a crucial rolein various fields, including image processing, audio processing, and, more recently, inthe context of convolutional neural networks (CNNs) in deep learning. In the contextof CNNs, the convolution operation is applied to learn features from input data,and the kernels (filters) used in the convolution are adaptively adjusted during thetraining process. The convolution operation for two-dimensional data (e.g. images)is defined as follows:

sij = (x ∗ w)[i, j] = m−1∑
k=0

n−1∑
l=0 xk,l · wi−k,j−l (9.3)

In this equation, x represents the input, s represents the output, w represents thekernel, and m and n are the height and width of the kernel, respectively. Pleasenote that the convolution operation is commutative:
sij = (w ∗ x)[i, j] = m−1∑

k=0
n−1∑
l=0 xi−k,j−l · wk,l (9.4)

DRAFT9.2. CONVOLUTIONS 99

So, in practice, when working with convolutional layers in deep learning frame-works, you would use the term "convolution," but the operation performed is a cross-correlation without flipping the kernel. The equation for this operation would be:
sij = (x ⊗ w)[i, j] = m−1∑

k=0
n−1∑
l=0 xi+k,j+l · wk,l (9.5)

The cross-correlation operation is computed by summing the element-wise productof the input and the kernel as it slides over the input. The cross-correlation operationsimplifies the implementation and doesn’t affect the network’s ability to learn andgeneralize from the data. The choice between convolution and cross-correlation doesnot affect a neural network’s ability to learn from data because the convolutionalfilters (kernels) themselves are learnable parameters, and the network adjusts themduring the training process.
9.2.2 Examples of the 1D cross-correlation operationsCross-correlation is a measure of similarity between two sequences as a functionof the displacement of one relative to the other. In the context of 1D input data anda filter, cross-correlation can be used to find how much one sequence (the filter)matches with a portion of another sequence (the input data) as the filter slides overthe input.Let’s walk through a simple example of 1D cross-correlation with a vector inputof 5 elements and a kernel (filter) of 3 elements in Figure 9.1.1 We perform thecross-correlation operation step by step. In each position, we calculate the sum ofelement-wise multiplication between the input and the kernel at that position. Theresulting vector is the cross-correlation output.

Figure 9.1: An example of 1D cross-correlation output [24].
Padding refers to the process of adding additional values around the borders of theinput feature map or image. Padding is an important concept in CNNs as it helps to

1https://cs231n.github.io/convolutional-networks/

DRAFT9.2. CONVOLUTIONS 100

preserve the spatial dimensions of the feature maps during the convolution operation.If you have a specific padding strategy, the results may vary. For example, to ensurethat the output vector size equals the input vector size, we need to zero-paddingthe input vector from the left and right (i.e. for positions where the kernel extendsbeyond the input boundaries) In Figure 9.2, we add "0" to the left and right of theinput. Hence, the cross-correlation output will maintain the same size as the input.

Figure 9.2: An example of 1D cross-correlation output where the zero-padding isimplemented.
The stride is a hyperparameter that determines the number of elements by whichthe convolution kernel slides over the input during the cross-correlation operation.Specifically, the stride defines the step size of the kernel as it moves across theinput. A stride of "1" means the kernel moves one element at a time, a stride of"2" means the kernel moves two elements at a time, and so on. The stride has asignificant impact on the size of the output. We show an example where the amountof padding added to the input is "1" element and the stride which is the number ofelements the kernel moves at each step is "2" in Figure 9.3.

Figure 9.3: An example of 1D cross-correlation output where the zero-padding = 1and the stride = 2.
In general, we can compute the size of the output vector, o, as a function of the inputvector size n, the receptive field size of the kernel f , the stride with which they are

DRAFT9.2. CONVOLUTIONS 101

applied s, and the amount of zero padding used p on the border as follows:
o = ⌊n+ 2p − fs

⌋ + 1, (9.6)
where ⌊·⌋ denotes the floor function. The floor function is used to ensure that theoutput size is an integer, representing the discrete grid positions where the filter isapplied.
9.2.3 Examples of the 2D cross-correlation operationsIn the context of image processing and computer vision, 2D cross-correlation is afundamental operation used to measure the similarity between two 2D signals, suchas images. The 2D cross-correlation is defined in Equation (9.5). The key aspectsof 2D cross-correlation are:

• Sliding window: The kernel is slid over the entire input image, with the centerof the kernel positioned at each element in the image.
• Element-wise multiplication: At each position, the values of the kernel aremultiplied element-wise with the corresponding values in the input image.
• Summation: The results of the element-wise multiplications are summed upto produce the final cross-correlation value at the position.

A simple example of 2D cross-correlation with an input matrix of 6×6 elements anda kernel (filter) matrix of 3 × 3 elements in Figure 9.4. When the stride parameteris 2, the output is given in Figure 9.5. In general, we can compute the size of theoutput matrix as a function of the input matrix size n× n, the receptive field size ofthe kernel f × f , the stride with which they are applied s, and the amount of zeropadding used p on the border as follows:
o1xo2 = [⌊n+ 2p − fs

⌋ + 1]× [⌊n+ 2p − fs
⌋ + 1] (9.7)

.

DRAFT9.2. CONVOLUTIONS 102

Figure 9.4: An example of 2D cross-correlation where the input is a matrix of 6x6elements and the kernel is a matrix of 3x3 elements [25].

Figure 9.5: An example of 2D cross-correlation where the input isFor example, theheight of the input equals to the height of the kernel a matrix of 6× 6 elements, thekernel is a matrix of 3× 3 elements, and the stride of 2.
In the case where the height of the 2D kernel is equal to the height of the 2D

DRAFT9.2. CONVOLUTIONS 103

input data, in this special case, the 2D cross-correlation operation can be reducedto a 1D cross-correlation along the width dimension. For example, the height of the2D input matrix equals the height of the kernel (both are 3) in Figure 9.6. Hence,the 2D cross-correlation operation reduces to 1D cross-correlation along the widthdimension.

Figure 9.6: The 2D cross-correlation operation can be reduced to a 1D cross-correlation along the width dimension, where the height of the 2D kernel is equalto the height of the 2D input data.
9.2.4 Examples of the 3D cross-correlation operationsImagine we have a 3D image with dimensions 6×6×3 instead of a 2D image. Howwould we apply convolution to this image? We would use a 3× 3× 3 filter insteadof a 3× 3 filter. Let’s see an example:Input: 6× 6× 3Filter: 3× 3× 3The dimensions represent the height, width, and channels of the input and filter.Note that the number of channels in the input and filter must be the same. This willresult in an output of 4× 4. Let’s visualize this example in Figure 9.7:Since the input has three channels, the filter will also have three channels. Afterconvolution, the output will be a 4 X 4 matrix. The first element of the output is thesum of the element-wise product of the first 27 values from the input (9 values fromeach channel) and the 27 values from the filter.

DRAFT9.2. CONVOLUTIONS 104

Figure 9.7: An example of cross-correlation over a volume [25].
Instead of using only one filter, we can apply multiple filters simultaneously. Forinstance, the first filter might detect vertical edges, while the second filter identifieshorizontal edges in the image. Using multiple filters alters the output dimensions.Therefore, instead of a 4× 4 output as in the previous example, we would obtain a4× 4× 2 output if two filters were used as shown in Figure 9.8.

DRAFT9.3. RESOLUTION CONTROL (SUBSAMPLING) 105

Figure 9.8: An example of cross-correlations over volume using multiple filters [25].
9.3 Resolution control (subsampling)
Max pooling and average pooling are two common down-sampling techniques usedin Convolutional Neural Networks (CNNs) to reduce the spatial dimensions of theinput data. They both help in reducing the number of parameters and computationalcost, and they also provide some degree of translation invariance.Max pooling selects the maximum value from a defined region (pooling window) ofthe input data. This operation highlights the most prominent features in that region.A fixed-size window (e.g., 2x2 or 3x3) slides over the input feature map. For eachwindow position, the maximum value within that window is selected and assigned tothe corresponding position in the output feature map. The window slides accordingto a specified stride, typically 2, meaning the window moves by 2 elements at a time.An example of the max pooling operation is shown in Figure 9.9. The output size ofa max pooling operation for 2D input data can be determined using the followingequation:

o = ⌊n − f + 2ps
⌋ + 1 (9.8)

where o is the size of the output, n is the size of the input, f is the size of the filter(pooling window), p is the amount of padding applied, s is the stride of the poolingoperation, and ⌊·⌋ denotes the floor function, which rounds down to the nearestinteger. If the input size n is 4, the filter size f is 2, the padding p is 0, and thestride s is 2, the output size o is calculated as follows:
o = ⌊4− 2 + 2 · 02

⌋ + 1 = ⌊22
⌋ + 1 = 1 + 1 = 2 (9.9)

DRAFT9.4. MODEL AND LEARNING PROBLEM 106

Thus, the output size is 2 in each dimension.The advantages of max pooling are:• Reduces the dimensionality of the feature map while retaining the most im-portant features.
• Helps to reduce overfitting by providing an abstracted form of the input rep-resentation.
• Provides translational invariance to small shifts and distortions in the input.Similar to max pooling, average pooling calculates the average value from a definedregion (pooling window) of the input data. This operation smooths the feature mapby averaging the features in each region.

Figure 9.9: For a 4x4 input matrix and a 2x2 max pooling window, the output is a2x2 matrix.
9.4 Model and learning problem

9.4.1 Convolutional layersTo compute the gradients during backpropagation in the convolutional layer [26], letus assume that the convolutional layer has only one channel. Hence, the equationsfor computing the gradients during backpropagation simplify slightly.Let’s consider the convolutional layer with a single-channel input al−1 and outputzl. The forward pass is computed as follows:
[zl00 zl01zl10 zl11

]
︸ ︷︷ ︸z [l]

=
a[l−1]00 a[l−1]01 a[l−1]02a[l−1]10 a[l−1]11 a[l−1]12a[l−1]20 a[l−1]21 a[l−1]22


︸ ︷︷ ︸a[l−1]

⊗ [w [l]00 w [l]01w [l]10 w [l]11
]

︸ ︷︷ ︸w [l]
+b[l] (9.10)

DRAFT9.4. MODEL AND LEARNING PROBLEM 107

zl00 = w [l]00a[l−1]00 +w [l]01a[l−1]01 +w [l]10a[l−1]10 +w [l]11a[l−1]11 + b[l]
zl01 = w [l]00a[l−1]01 +w [l]01a[l−1]02 +w [l]10a[l−1]11 +w [l]11a[l−1]12 + b[l]
zl10 = w [l]00a[l−1]10 +w [l]01a[l−1]11 +w [l]10a[l−1]20 +w [l]11a[l−1]21 + b[l]
zl11 = w [l]00a[l−1]11 +w [l]01a[l−1]12 +w [l]10a[l−1]21 +w [l]11a[l−1]22 + b[l]

(9.11)
The gradient of the loss E with respect to the weight matrix wl can be computed asfollows: ∂E∂w [l]00 = ∂E∂z [l]00 · a[l−1]00 + ∂E∂z [l]01 · a[l−1]01 + ∂E∂z [l]10 · a[l−1]10 + ∂E∂z [l]11 · a[l−1]11

∂E∂w [l]01 = ∂E∂z [l]00 · a[l−1]01 + ∂E∂z [l]01 · a[l−1]02 + ∂E∂z [l]10 · a[l−1]11 + ∂E∂z [l]11 · a[l−1]12
∂E∂w [l]10 = ∂E∂z [l]00 · a[l−1]10 + ∂E∂z [l]01 · a[l−1]11 + ∂E∂z [l]10 · a[l−1]20 + ∂E∂z [l]11 · a[l−1]21
∂E∂w [l]11 = ∂E∂z [l]00 · a[l−1]11 + ∂E∂z [l]01 · a[l−1]12 + ∂E∂z [l]10 · a[l−1]21 + ∂E∂z [l]11 · a[l−1]22

(9.12)

Assume z [l] is m x n dimensional
∂E∂w [l]p,q = m−1∑

i=0
n−1∑
j=0

∂E∂z [l]i,j · a[l−1]p+i,q+j
= m−1∑

i=0
n−1∑
j=0 a[l−1]p+i,q+j · ∂E∂z [l]i,j

= m−1∑
i=0

n−1∑
j=0 a[l−1]p+i,q+j · δ [l]i,j

(9.13)

where δ [l]i,j = ∂E∂z [l]i,j . It can written as follows: ∂E∂w [l]00
∂E∂w [l]01∂E∂w [l]10
∂E∂w [l]11


︸ ︷︷ ︸∂E∂w [l]

=
a[l−1]00 a[l−1]01 a[l−1]02a[l−1]10 a[l−1]11 a[l−1]12a[l−1]20 a[l−1]21 a[l−1]22


︸ ︷︷ ︸a[l−1]

⊗  ∂E∂z [l]00
∂E∂z [l]01∂E∂z [l]10
∂E∂z [l]11


︸ ︷︷ ︸∂E∂z[l]

(9.14)
We observe that the gradient with respect to the weights is a cross-correlation

DRAFT9.4. MODEL AND LEARNING PROBLEM 108

operation as well. For the bias term:
∂E∂b[l] = m−1∑

i=0
n−1∑
j=0 δ [l]i,j (9.15)

The computation of δ [l−1]ij is given by:
∂E∂a[l−1]00 = ∂E∂zl00 · w [l]00
∂E∂a[l−1]01 = ∂E∂zl00 · w [l]01 + ∂E∂zl01 · w [l]00
∂E∂a[l−1]02 = ∂E∂zl01 · w [l]01...∂E∂a[l−1]11 = ∂E∂zl00 · w [l]11 + ∂E∂zl01 · w [l]10 + ∂E∂zl10 · w [l]01 + ∂E∂zl11 · w [l]00...∂E∂a[l−1]22 = ∂E∂zl11 · w [l]11

(9.16)


∂E∂a[l−1]00

∂E∂a[l−1]01
∂E∂a[l−1]02∂E∂a[l−1]10

∂E∂a[l−1]11
∂E∂a[l−1]12∂E∂a[l−1]20

∂E∂a[l−1]21
∂E∂a[l−1]22


︸ ︷︷ ︸∂E∂a[l−1]

=


0 0 0 00 ∂E∂zl00 ∂E∂zl01 00 ∂E∂zl10 ∂E∂zl11 00 0 0 0


︸ ︷︷ ︸Padded ∂E∂zl

⊗ [w [l]11 w [l]10w [l]01 w [l]00
]

︸ ︷︷ ︸Rotatedw [l]
(9.17)

hence,
δ [l−1]ij = g′(z [l]ij)⊙ (pad(δ [l])⊗ rot180(w [l])) [i, j] (9.18)

In this equation: g′(z [l]ij) represents the derivative of the activation function applied tothe output of the convolutional layer at position (i, j) and w [l] represents the weightmatrix of the convolutional layer. The ⊗ denotes the cross-correlation operation andpad(δ [l]) represents the padded error term from the next layer.

DRAFT9.5. AN EXAMPLE 109

9.4.2 Pooling layersIn 2D max pooling, the output at position (i, j) is the maximum value within the filterwindow applied to the input:
Oi,j = max(m,n)∈filter windowXi·s+m,j·s+n (9.19)

where: - X is the input matrix. - O is the output matrix. - s is the stride. - The filterwindow is the region of the input matrix over which the filter is applied, typicallyof size f × f .In the backward pass, the gradient is propagated to the position in the input matrixthat contributed the maximum value to the output:
∂L∂Xi·s+m,j·s+n = { ∂L∂Oi,j if Xi·s+m,j·s+n = Oi,j0 otherwise (9.20)

where ∂L∂Oi,j is the gradient of the loss with respect to the output at position (i, j).In 2D average pooling, the output at position (i, j) is the average value within thefilter window applied to the input:
Oi,j = 1f 2 ∑

(m,n)∈filter windowXi·s+m,j·s+n (9.21)
where: - f is the filter size.In the backward pass, the gradient is equally distributed among all positions in thefilter window:

∂L∂Xi·s+m,j·s+n = 1f 2 ∂L∂Oi,j (9.22)
where ∂L∂Oi,j is the gradient of the loss with respect to the output at position (i, j).These equations describe how the gradients are calculated and propagated backthrough the pooling layers during backpropagation in a convolutional neural net-work.
9.5 An Example
LeNet-5 is a classic convolutional neural network architecture that was proposedby Yann LeCun et al. in 1998 [27]. It was designed primarily for handwritten digitrecognition tasks, such as the MNIST dataset. LeNet-5 played a significant role inpopularizing convolutional neural networks and was a pioneering architecture fordeep learning.Here are the key details of the LeNet-5 architecture (i.e. Figure 9.10):

DRAFT9.5. AN EXAMPLE 110

Figure 9.10: LeNet-5 is a simple convolutional neural network for handwritten char-acter recognition [27].
1. The input to LeNet-5 is a grayscale image of size 32x32 pixels.
2. The first layer is a convolutional layer with 6 filters. Each filter has a sizeof 5x5 and the convolution is followed by a sub-sampling (pooling) operation.The subsampling operation is typically done using average pooling with awindow size of 2x2 and a stride of 2. The idea of using subsampling layers isto reduce the spatial dimensions while retaining the important features.
3. The second layer is another convolutional layer with 16 filters. Each filterhas a size of 5x5. Similar to the first layer, this layer is also followed by asubsampling operation.
4. After the convolutional layers, the output is flattened into a vector. This flat-tened vector is then fed into a fully connected layer. LeNet-5 has three fullyconnected layers with 120, 84, and 10 neurons respectively. The final fullyconnected layer has 10 neurons, corresponding to the 10 possible classes inthe MNIST dataset.
5. LeNet-5 uses the sigmoid activation function in all layers except for the out-put layer. The output layer typically uses the softmax activation function toproduce a probability distribution over the classes.

The LeNet-5 architecture is trained using the backpropagation algorithm with gradi-ent descent optimization. The loss function used is typically the cross-entropy loss.During training, the weights of the network are updated iteratively to minimize theloss and improve the network’s performance.LeNet-5 achieved remarkable performance on handwritten digit recognition tasksand demonstrated the effectiveness of convolutional neural networks for image clas-

DRAFT9.6. ASSIGNMENTS 111

sification. It laid the foundation for more advanced CNN architectures that fol-lowed [28, 29].
9.6 Assignments
Please implement LeNet-5 network using Keras and Google colab. To load thedataset, please use the method: tf.keras.datasets.mnist.load_data().

DRAFT
112

DRAFT10.1. MODEL 113

10. Recurrent Neural Net-
works

Recurrent nets are in principlecapable to store past inputs toproduce the currently desiredoutput. Because of this propertyrecurrent nets are used in timeseries prediction and processcontrol. Practical applicationsinvolve temporal dependenciesspanning many time steps, e.g.between relevant inputs anddesired outputs. In this case,however, gradient based learningmethods take too much time. Theextremely increased learning timearises because the error vanishesas it gets propagated back.— Sepp Hochreiter
Recurrent neural networks, and in particular, Long Short-Term Memory (LSTM) net-works, have revolutionized the field of sequence modeling. LSTMs provide a pow-erful framework for capturing long-range dependencies in sequential data, enablingmachines to understand and generate complex sequences with remarkable fluencyand precision. In this chapter, we will introduce RNNs and LSTMs and address thedifficulty to train these networks.
10.1 Model
A simple RNN is a type of artificial neural network that is designed to processsequential data. It has a recurrent structure that allows it to maintain an internalstate (hidden state) that captures information from previous steps in the sequence.Unlike linear dynamical systems, RNNs are nonlinear models and can learn complex

DRAFT10.1. MODEL 114

patterns and dependencies in sequential data. The hidden state of an RNN isupdated at each time step based on the current input and the previous hidden state,using nonlinear activation functions. RNNs possess a recurrent connection enablingthem to store information about past inputs within their hidden state.Unlike feedforward neural networks, which process data in a single forward pass andhave no memory of past inputs, RNNs have a recurrent connection that allows themto maintain information about previous inputs in their hidden state. A dynamicalsystem may be defined by:
ht = fh(Xt , ht−1) (10.1)yt = fo(ht) (10.2)

A simple RNN [30] comprises three layers: an input layer, a hidden layer, andan output layer as shown in Figure 10.1. The input layer receives sequential dataduring each time step, the hidden layer retains memory and processes the sequentialinformation, and the output layer generates the final output or prediction.

Figure 10.1: An unfolded simple recurrent neural network. The matrices Wx ,Wh,Wyare shared between time steps. Unfolding a simple RNN helps to illustrate howthe hidden state is passed along and updated as the network processes sequentialdata. It provides a visual representation of the temporal dependencies and the flowof information within the RNN.
Let’s define the forward pass equations of the simple RNN model:

• Hidden state activation:
zht = Whht−1 +Wxxt + bh (10.3)ht = tanh(zht) (10.4)

DRAFT
10.1. MODEL 115

• Output activation: zyt = Wyht + by (10.5)yt = softmax(zyt) (10.6)
The hidden activation function is tanh and its derivative is 1− tanh2(x). The outputactivation function is softmax, which for a specific class i is defined as:

softmax(zyi) = ezyi∑j ezyj (10.7)
Where y represents the output and l represents the target. The activations of thehidden state and output are zh and zy respectively. The weight matrix connectingthe hidden layer to the output is Wy.Let’s denote dneurons as the number of neurons in the hidden layer and dinputs as thenumber of input features. Then:• xt is a vector of size dinputsx1 containing the inputs at time t .• ht−1 is a dneuronsx1 vector containing the hidden state of the previous time-step. At the first time step, t = 0, there are no previous hidden state, soht−1 = 0.• Wx is a dneurons × dinputs matrix containing the connection weights betweeninput and the hidden layer.• Wh is a dneurons × dneurons matrix containing the connection weights betweentwo hidden layers.• Wy is a doutput × dneurons matrix containing the connection weights betweenthe hidden layer and the output.• bh is a vector of size dneuronsx1 containing each neuron’s bias term.• by is a vector of size doutputx1 containing the bias term of the output layer.• yt is a vector of size doutputx1 containing the layer’s outputs at time step t .RNNs are designed to handle sequential data with varying lengths, dividing theinput data into multiple time steps, where each step represents an element of thesequence.A distinguishing feature of RNNs is the recurrent connection, which allows thenetwork to retain information across time steps. At each time step, the hidden layertakes input from the current step as well as the hidden state from the previous step,enabling the hidden state to carry information from past steps. Moreover, the sameset of weights and biases is used at each time step, enabling effective processing ofsequences with different lengths.

DRAFT10.2. LEARNING PROBLEM 116

10.2 Learning Problem
RNNs are trained using backpropagation through time (BPTT), an extension of thestandard backpropagation algorithm that accounts for the recurrent nature of thenetwork. BPTT calculates gradients and updates the weights and biases to minimizethe discrepancy between the predicted output and the target value. For the back-ward pass, we will compute the gradients of the loss with respect to the activationsand parameters. Let’s define the loss at each time step as:

Et = −∑i lti logyti (10.8)
This is the categorical cross-entropy loss for softmax outputs at time t . The overallloss is given by

E = T∑
t=1 Et(lt , yt) (10.9)

= − T∑
t lTt logyt (10.10)

= − T∑
t=1 lTt log [softmax(zyt)] (10.11)

Firstly, let’s define the quantities δyt and δht :
δyt = ∂Et∂zyt (10.12)

To get the gradient with respect to the pre-activation zyt , we need to apply the chainrule to differentiate Lt : ∂Et∂zyt = ∂Et∂yt × ∂yt∂zyt (10.13)
This derivative is calculated as the derivative of the loss function with respect tothe output, multiplied by the derivative of the softmax activation function. Using theproperties of the softmax function and the cross-entropy loss (i.e. see Chapter 6),the above simplifies to:

δyt = yt − lt (10.14)Now let’s define δht :

DRAFT10.2. LEARNING PROBLEM 117

δht = ∂Et∂zht (10.15)
This derivative includes all paths through the computational graph where zht affectsthe loss function E . This is calculated using the chain rule as:

δht = ∂Et∂ht ∂ht∂zht = (∂Et∂zyt ∂z
yt∂ht + ∂Et∂zht+1

∂zht+1∂ht
) ∂ht∂zht (10.16)

Substituting δyt and δht+1 and the derivative of the tanh function:
δht = (WyT δyt +WhT δht+1)⊙ (1− tanh2(zht)) (10.17)This equation is the form of the backpropagation through time (BPTT) for hiddenstates in RNN. The ⊙ denotes the Hadamard product (element-wise multiplication).The term 1 − tanh2(zht) is the derivative of the tanh activation function. The termsδyt WyT and δht+1WhT represent the influence of the error at the output at time t andthe influence of the error at the hidden state at time t + 1 respectively. They areboth backpropagated to the hidden state at time t through the respective weightmatrices Wy and Wh.For an input sequence of length T , the gradient accumulations are given byFor the weight matrix Wy:

∂E∂Wy = T∑
t=1

∂Et∂zyt ∂z
yt∂Wy = T∑

t=1 δyt · hTt (10.18)
For the bias by: ∂E∂by = T∑

t=1
∂Et∂zyt = T∑

t=1 δyt (10.19)
For the recurrent weight matrix Wh:

∂E∂Wh = T∑
t=1

∂Et∂zht ∂zht∂Wh = T∑
t=1 δht · hTt−1 (10.20)

For the input weight matrix Wx :
∂E∂Wx = T∑

t=1
∂Et∂zht ∂zht∂Wx = T∑

t=1 δht · xTt (10.21)

DRAFT10.3. THE DIFFICULTY OF TRAINING SIMPLE RNN 118

For the bias bh: ∂E∂bh = T∑
t=1

∂Et∂zht = T∑
t=1 δht (10.22)

After accumulating the gradients over the entire sequence, you can use an optimiza-tion algorithm (like SGD, Adam, etc.) to update the weights and biases:
W = W − η ∂E∂W (10.23)
b = b − η∂E∂b (10.24)

where η is the learning rate.Simple RNNs face a challenge known as the vanishing or exploding gradients prob-lem [31]. This arises when gradients in the network become excessively small (van-ishing gradients) or large (exploding gradients) while processing lengthy sequences.This issue hampers the training process and the model’s ability to retain long-termdependencies.
10.3 The Difficulty of Training Simple RNN

Figure 10.2: Propagating gradients through the unfolded RNN. The memory unit,ht , is a function of its previous memory unit ht−1. Hence, we differentiate h3 withh2 and h2 with h1.In the following Figure 10.2, we have three-time steps. Then
∂E3∂Wh = ∂E3∂y3

∂y3∂h3
∂h3∂Wh + ∂E3∂y3

∂y3∂h3
∂h3∂h2

∂h2∂Wh + ∂E3∂y3
∂y3∂h3

∂h3∂h2
∂h2∂h1

∂h1∂Wh , (10.25)

DRAFT10.3. THE DIFFICULTY OF TRAINING SIMPLE RNN 119

where the first term is a direct application of the chain rule. However, we have totake into consideration the previous time steps. So, we differentiate the cost functionwith respect to memory units h2 as well as h1 taking into consideration the weightmatrix Wh. Please note that a memory unit ht is a function of its previous memoryunit ht−1 according to the recursive formulation (ht = f (Whht−1+Wxxt+bh)). Hence,we differentiate h3 with h2 and h2 with h1.Hence, at the time-step t , we can compute the gradient and further use backprop-agation through time from t to 1 to compute the overall gradient with respect toWh:
∂Et∂Wh = t∑

k=1
∂Et∂yt ∂yt∂ht ∂ht∂hk ∂hk∂Wh , (10.26)

and ∂ht∂hk can be computed using a chain rule. It can be written as follows
∂Et∂Wh = t∑

k=1
∂Et∂yt ∂yt∂ht

 t∏
j=k+1

∂hj∂hj−1
 ∂hk∂Wh (10.27)

where
t∏

j=k+1
∂hj∂hj−1 = t∏

j=k+1W⊤h diag[f ′(hj−1)] = ∂ht∂hk = ∂ht∂ht−1
∂ht−1∂ht−2 ...∂hk+1∂hk , (10.28)

Since we differentiate a vector function with respect to a vector, the result is amatrix (called the Jacobian matrix) whose elements are all point-wise derivatives.Aggregate the gradients with respect to Wh over the whole time-steps with back-propagation, we can finally yield the following gradient with respect to Wh:
∂E∂Wh = T∑

t=1
t∑

k=1
∂Et∂yt ∂yt∂ht ∂ht∂hk ∂hk∂Wh (10.29)

Hence:
∂E∂Wh = T∑

t=1
 t∑
k=1

∂Et∂hk
t∏

j=k+1W⊤h · diag[f ′(Wxxj +Whhj−1 + bh)] · f ′(Wxxk +Whhk−1 + bh)h⊤k−1


(10.30)Let’s take the norms1 of these Jacobians ∥∥∥ ∂hj∂hj−1
∥∥∥:

1The 2-norm may be interpreted as an absolute value, of the Jacobian matrix.

DRAFT10.3. THE DIFFICULTY OF TRAINING SIMPLE RNN 120

∥∥∥∥ ∂hj∂hj−1
∥∥∥∥ ≤ ∥∥W⊤h ∥∥∥∥diag[f ′(hj−1)]∥∥ (10.31)

In this equation, we set γW , the largest eigenvalue associated with ∥∥W⊤h ∥∥ as itsupper bound, while γh largest eigenvalue associated with ∥∥diag[f ′(hj−1)]∥∥ as itscorresponding upper-bound. Thus, the chosen upper bounds γW and γh end upbeing a constant term resulting from their product:∥∥∥∥ ∂hj∂hj−1
∥∥∥∥ ≤ γW γh (10.32)

Depending on the chosen activation function f , the derivative f ′ will be upperbounded by different values. For hyperbolic tangent function as shown in Figure10.3, we have γh = 1 while for sigmoid function, we have γh = 0.25.The gradient ∂ht∂hk is a product of Jacobian matrices that are multiplied many times,t − k times in our case:∥∥∥∥ ∂ht∂hk
∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1
∂hj∂hj−1

∥∥∥∥∥∥ ≤ (γW γh)t−k (10.33)
The equation can be paraphrased as follows: The magnitude of the partial derivativeof the hidden state at time step t with respect to the hidden state at time step kis equal to the magnitude of the product of the partial derivatives of consecutivehidden states from time step k + 1 to time step t . This magnitude is bounded bythe value of the product of two factors, γW and γh, raised to the power of t − k .When the sequence becomes longer, meaning there is a larger distance betweentime steps t and k, the equation shows that the value can either become very smallor very large quickly. This violates the assumption of locality in gradient descent2.The outcome depends on the value of gamma: if it is large, the gradient can explode(become very large), and if it is small, the gradient can vanish (become very small).These problems highlight that when the gradient vanishes, it implies that the earlierhidden states do not significantly influence the later hidden states. In other words,the network fails to learn long-term dependencies, as the information from earliertime steps becomes negligible or irrelevant in the later ones.Assume γh = 1 then if the norm of the weight matrix W⊤h is less than 1, each time wemultiply the gradient by ||W⊤h ||, the magnitude of the gradient decreases. Imaginemultiplying a number by 0.5 repeatedly - the result gets smaller and smaller. This is

2Both vanishing and exploding gradients violate the assumption of locality in gradient descentbecause they disrupt the smoothness and stable progression of the optimization process.

DRAFT10.3. THE DIFFICULTY OF TRAINING SIMPLE RNN 121

Figure 10.3: The hyperbolic tangent activation function and its derivative.
why ||W⊤h || < 1 is a sufficient3 condition for the gradients to vanish. It guaranteesvanishing gradients because multiplying by a number less than one repeatedlywill always cause the result to tend towards zero. However, it’s not a necessarycondition because there are other reasons gradients might vanish, such as saturatingactivation functions.On the other hand, if the norm of the weight matrix W⊤h is greater than 1, each multi-plication by ||W⊤h || increases the magnitude of the gradient. Think about multiplyinga number by 2 over and over - the result gets larger and larger. So ||W⊤h || > 1 isa necessary condition for gradient explosion. But just because ||W⊤h || > 1 doesn’tguarantee that the gradients will explode. Other factors might prevent this, such asgradient clipping or careful initialization of the weights. This is why ||W⊤h || > 1 isnecessary, but not *sufficient*, for gradient explosion.Remember that these are simplifications - in reality, the behavior of the gradientsin an RNN will depend on a combination of many factors, including the specificsequences of inputs, the activation functions, and the structure of the network, inaddition to the weight matrices. But considering the norms of the weight matricesprovides some insight into the challenges faced when training RNNs, namely theproblems of vanishing and exploding gradients.The problem of vanishing gradients is not exclusive to recurrent neural networks(RNNs) but also occurs in deep feedforward neural networks. However, RNNs aretypically deeper, which makes this issue more common in RNNs.The vanishing or exploding gradients problem can hinder the effective capture oflong-range dependencies by simple RNNs. To mitigate this issue, more advanced

3The difference between necessary and sufficient conditions can be quite subtle. In mathematics,a necessary condition must be true for the given statement to be true, but it is not enough on its ownto guarantee the statement is true. A sufficient condition, on the other hand, if true, guarantees thestatement is true.

DRAFT10.4. LONG SHORT-TERM MEMORY NETWORKS 122

RNN architectures such as Long Short-Term Memory (LSTM) and Gated RecurrentUnit (GRU) were introduced. These architectures incorporate mechanisms that en-able better control of information flow within the network, addressing the challengesassociated with vanishing or exploding gradients.
10.4 Long Short-Term Memory Networks
In practice, RNNs cannot capture long term dependencies due to the gradient ex-ploding and vanishing problems [31]. LSTMs were introduced [32] to overcome thegradient vanishing problems and they are an essential component for many appli-cations.

Figure 10.4: The hidden state computation in an LSTM network.
An LSTM network (see Figure 10.5) has a memory cell and three gating units: theinput gate is used to control the amount of information to add to the current memory,the forget gate is used to control the amount of information to remove from theprevious memory, and the output gate is used to control the amount of informationto output from the current memory. These gates take as input the previous hiddenstate and the current input, and outputs a number between 0 and 1 (i.e. logisticfunction). The flow of information into or out of the memory is controlled by themultiplication of the output of these gates. The updates at each time step t are

DRAFT10.4. LONG SHORT-TERM MEMORY NETWORKS 123

given by:
it = σ (Wiht−1 + Uixt) (10.34)
ft = σ (Wfht−1 + Ufxt) (10.35)
ot = σ (Woht−1 + Uoxt) (10.36)
c̃t = tanh(Wcht−1 + Ucxt) (10.37)
ct = ft ⊙ ct−1 + it ⊙ c̃t (10.38)
ht = ot ⊙ tanh(ct) (10.39)

where it is the input gate, ft is the forget gate, ot is the output gate, ct is thememory cell, and ht is the hidden state. ⊙ denotes element-wise multiplication.
Wi,Ui, Wf ,Uf , Wo,Uo,Wc ,Uc , are weight matrices (parameters) of the LSTM network.A variant of LSTM known as bidirectional BiLSTM [33] allows the integration of bothpast and future information. It is a combination of two LSTMs in two directions: oneoperates in the forward direction and the other operates in the backward direction.Hence, each input word at time t is aware about the past and future contexts whichmay improve the results.Similar to LSTMs, Gated Recurrent Units (GRUs) were developed to handle longterm dependencies [34]. The gated recurrent units (GRUs) [35] which have the fol-lowing forward updates:

zt = σ (Wzht−1 + Uzxt) (10.40)
rt = σ (Wrht−1 + Urxt) (10.41)
h̃t = tanh(Wh(ht ⊙ rt) + Uhxt) (10.42)
ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (10.43)

where zt is the update gate, rt is the reset gates. Wz ,Uz , Wr ,Ur , Wh,Uh, are theparameters of the GRU networks.
10.4.1 Vanishing/Exploding Gradients with LSTMsThe cell state in the LSTMs is given by

ct = ft ⊙ ct−1 + it ⊙ c̃t (10.44)
To find the derivative ∂ct∂ct−1 , we notice that ct is a function of ft (the forget gate),
it (input gate) and c̃t (candidate input), and each of these being a function of ct−1

DRAFT10.5. INDEPENDENTLY RECURRENT NEURAL NETWORK 124

(since they are all functions of ht−1). Using the multivariate chain rule we get:∂ct∂ct−1 = ∂ft∂ct−1 · ct−1 + ft + ∂it∂ct−1 · c̃t + ∂c̃t∂ct−1 · it= σ ′(Wfht−1 + Ufxt) ·Wf · ot−1 ⊙ tanh(ct−1) · ct−1+ ft+ σ ′(Wiht−1 + Uixt) ·Wi · ot−1 ⊙ tanh(ct−1) · c̃t+ σ ′(Wcht−1 + Ucxt) ·Wc · ot−1 ⊙ tanh(ct−1) · it
(10.45)

Hence, the cell state gradient is an additive function of the four terms computed inthe above equation. During the backpropagation, it is possible for these additiveterms to have a value of 1⃗ . Therefore, using LSTMs, the neural network is trainedto determine when the gradient should vanish and when it should be retained byadjusting the values of the four terms.The LSTM design is not always sufficient to prevent the issue of exploding gradi-ents. Therefore, in successful applications of LSTM, an additional technique calledgradient clipping is often employed. Gradient clipping helps mitigate the problemof exploding gradients by constraining the magnitude of the gradients during thetraining process.
10.5 Independently Recurrent Neural Network

The Independently Recurrent Neural Network (IndRNN) [36] is a type of RNN de-signed to address the issues of gradient vanishing and exploding that often occurin traditional RNNs. The key idea behind IndRNN is to have separate recurrentconnections for each neuron, making the neurons operate independently across dif-ferent time steps. This independence allows for better control over the gradient flowduring backpropagation, thereby mitigating the problems of gradient vanishing andexploding.For IndRNN, the hidden state hi,t for each neuron i at time step t is computed as:
hi,t = f (Wxxt + uihi,t−1 + bi), (10.46)

where hi,t is the hidden state of the i-th neuron at time step t , xt is the input attime step t , Wx is the input weight shared across all neurons, ui is the recurrentweight for the i-th neuron, bi is the bias for the i-th neuron, and f is an activationfunction, typically ReLU.To understand how IndRNN addresses gradient vanishing and exploding, let’s derivethe gradient of the loss L with respect to the hidden state hi,t . Using the chain rule,the gradient of the loss L with respect to the hidden state hi,t can be decomposedas follows:

DRAFT10.6. BIDIRECTIONAL RECURRENT NEURAL NETWORKS 125

∂L∂hi,t = T∑
k=t+1

∂L∂hi,k · ∂hi,k∂hi,t , (10.47)
and the partial derivative ∂hi,k∂hi,t is:

∂hi,k∂hi,t = k∏
j=t+1

∂hi,j∂hi,j−1 (10.48)
Given:

∂hi,j∂hi,j−1 = uif ′(Wxxj + uihi,j−1 + bi) (10.49)
Therefore, the overall gradient becomes:

∂L∂hi,t = T∑
k=t+1

∂L∂hi,k ·
k∏

j=t+1uif ′(Wxxj + uihi,j−1 + bi) (10.50)
The key here is that the recurrent weight ui is a single scalar, making it easier tocontrol the gradient flow. The activation function f , typically chosen as ReLU, helpsmitigate vanishing gradients because ReLU does not saturate like tanh or sigmoidwhere f (x) = max(0, x), f ′(x) = 1 for x > 0, preventing the gradient from vanishing.Additionally, by having a recurrent weight ui that is scalar, it can be initialized andconstrained to values that prevent the gradients from diminishing too quickly. Bycarefully constraining the recurrent weights ui, IndRNN can prevent the gradientsfrom growing exponentially. For example, setting ui to be within a specific range(e.g., |ui| < 1 for stability) can maintain control over the gradient magnitude.
10.6 Bidirectional Recurrent Neural Networks
Bidirectional Recurrent Neural Networks (Bidirectional RNNs) are an extensionof the traditional RNNs that can capture information from both past and futurecontexts by processing the sequence in both forward and backward directions. Thisis particularly useful for tasks where the entire context of the input sequence isimportant, such as in natural language processing and speech processing.A Bidirectional RNN consists of two separate RNNs. A forward RNN that processesthe sequence from the beginning to the end and backward RNN that processes thesequence from the end to the beginning.Given an input sequence X = {x1, x2, . . . , xT }, where T is the length of the sequence,the Bidirectional RNN computes two sets of hidden states. The forward hiddenstates −→h t and the backward hidden states ←−h t :

DR
AF

T

10.7. AN EXAMPLE 126

• The forward hidden states are computed as:−→h t = f (xt , −→h t−1), (10.51)
where f is the RNN cell (e.g., LSTM or GRU) function applied to the input attime step t and the previous forward hidden state −→h t−1.

• The backward hidden states are computed as:←−
h t = f (xt ,←−h t+1), (10.52)

where f is the RNN cell function applied to the input at time step t and thenext backward hidden state ←−h t+1.
• The final hidden state ht for each time step t can be a combination of −→h t and←−h t .The combination of the forward and backward hidden states can be done in variousways, commonly referred to as merge modes. Two typical merge modes are "sum"and "concat":
• In the "sum" merge mode, the forward and backward hidden states are addedelement-wise:

ht = −→h t +←−h t , (10.53)where this merge mode results in a hidden state with the same dimensionalityas each of the forward and backward hidden states.
• In the "concat" merge mode, the forward and backward hidden states are con-catenated along the feature dimension:

ht = concat(−→h t ,←−h t), (10.54)
where this merge mode results in a hidden state with double the dimension-ality of each of the forward and backward hidden states.

Bidirectional RNNs are particularly powerful for tasks that require understandingcontext from both directions in a sequence. By using bidirectional processing, thesemodels can achieve a more comprehensive understanding of the input sequence,leading to improved performance on various tasks.

DR
AF

T

10.7. AN EXAMPLE 127

Figure 10.5: Sine wave prediction using RNN model. The curve with the orangecolor is the predicted one.
10.7 An Example
A Python code is provided to illustrate the learning algorithm of a regression problembased on the simple RNN model (Elman’s network).

12 import numpy as np3 import matplotlib . pyplot as plt45 # Define the sine wave sequence6 def generate_sequence (length):7 freq = 0.1 # Frequency of the sine wave8 x = np. arange (0, length)9 y = np.sin(freq * x)10 return y1112 # Define the ElmanRNN class13 class ElmanRNN :14 def __init__ (self , input_size , hidden_size , output_size):15 self. input_size = input_size16 self. hidden_size = hidden_size17 self. output_size = output_size1819 # Initialize the weights20 self.W_xh = np. random .randn(hidden_size , input_size)21 self.W_hh = np. random .randn(hidden_size , hidden_size)22 self.W_hy = np. random .randn(output_size , hidden_size)2324 # Initialize the biases25 self.b_h = np.zeros ((hidden_size ,))26 self.b_y = np.zeros ((output_size ,))27

DR
AF

T

10.7. AN EXAMPLE 128

28 def forward (self , x):29 T = x.shape [0]30 self.h = np.zeros ((T + 1, self. hidden_size))31 self.y = np.zeros ((T, self. output_size))3233 for t in range(T):34 self.h[t + 1] = np.tanh(np.dot(self.W_xh , x[t]) + np.dot
(self.W_hh , self.h[t]) + self.b_h)35 self.y[t] = np.dot(self.W_hy , self.h[t + 1]) + self.b_y3637 return self.y3839 def backward (self , x, y, learning_rate):40 T = x.shape [0]41 dL_dW_xh = np. zeros_like (self.W_xh)42 dL_dW_hh = np. zeros_like (self.W_hh)43 dL_dW_hy = np. zeros_like (self.W_hy)44 dL_db_h = np. zeros_like (self.b_h)45 dL_db_y = np. zeros_like (self.b_y)46 dh_next = np. zeros_like (self.h[0])474849 for t in reversed (range(T)):50 dL_dy = 2 * (self.y[t] - y[t])51 dL_dW_hy += np.dot(dL_dy.T, self.h[t+1]. reshape (-1, 1).T
)52 dL_db_y += dL_dy5354 dh = np.dot(self.W_hy.T, dL_dy.T) + dh_next . reshape (-1,
1)55 dh_raw = (1 - self.h[t+1] ** 2) * dh [0]56 dL_db_h += dh_raw5758 dL_dW_hh += np.dot(dh_raw . reshape (-1, 1), self.h[t].
reshape (1, -1))59 dL_dW_xh += np.dot(dh_raw . reshape (-1, 1), x[t]. reshape
(1, -1))6061 dh_next = np.dot(self.W_hh.T, dh_raw . reshape (-1, 1))62636465 # Update weights and biases66 self.W_xh -= learning_rate * dL_dW_xh67 self.W_hh -= learning_rate * dL_dW_hh68 self.W_hy -= learning_rate * dL_dW_hy69 self.b_h -= learning_rate * dL_db_h70 self.b_y -= learning_rate * dL_db_y7172 def train(self , x, y, learning_rate , num_epochs):

DRAFT10.7. AN EXAMPLE 129

73 for epoch in range(num_epochs):74 y_pred = self. forward (x)75 self. backward (x, y, learning_rate)7677 if (epoch + 1) % 100 == 0:78 loss = np.mean ((y_pred - y) ** 2)79 print(f’Epoch: {epoch +1}/{ num_epochs }, Loss: {loss}’
)8081 # Define the sequence length and generate the sine wave sequence82 sequence_length = 10083 sequence = generate_sequence (sequence_length)8485 # Prepare the training data86 train_data = sequence [: -1]87 train_target = sequence [1:]8889 # Reshape the training data for input to the Elman RNN90 train_data = train_data . reshape (sequence_length -1, 1)91 train_target = train_target . reshape (sequence_length -1, 1)9293 # Define hyperparameters94 input_size = 195 hidden_size = 1696 output_size = 197 learning_rate = 0.00198 num_epochs = 1000099100 # Initialize the Elman RNN model101 model = ElmanRNN (input_size , hidden_size , output_size)102103 # Train the model104 model.train(train_data , train_target , learning_rate , num_epochs)105106 # Generate predictions for the sequence107 predictions = model. forward (train_data)108109 # Plot the original sine wave and the predicted sine wave110 plt. figure (figsize =(12 , 6))111 plt.plot(sequence [:-1], label=’Original Sine Wave ’) # Original sine

wave112 plt.plot(predictions , label=’Predicted Sine Wave ’) # Predicted sine
wave113 plt. xlabel (’Time ’) # X-axis label114 plt. ylabel (’Amplitude ’) # Y-axis label115 #plt.title(’ Original vs Predicted Sine Wave ’) # Title of the plot116 #plt. legend () # Display legend117 #plt.show () # Display the plot

DRAFT10.8. ASSIGNMENTS 130

118 plt. savefig (’rnn_sine .png ’, dpi =600)Listing 10.1: Python example for sine wave prediction problem.
10.8 Assignments
Implement a neural langauge modeling algorithm using the RNN model using theKeras deep learning library and Google colab. To load the dataset, please visit
https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/
input.txt.

https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt
https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt

DRAFT
131

DRAFT11.1. SCALED DOT-PRODUCT SIMILARITY MEASURE 132

11. Attention Networks

Attention is all you need.— Ashish Vaswani and colleagues

Recurrent Neural Networks (RNNs) operate sequentially, which makes them slowfor both training and inference. In this chapter, we introduce self-attention networksas a replacement for RNN layers. One application of self-attention networks in thesequence-to-sequence Transformer model is in machine translation. In this context,the self-attention mechanism allows the model to learn the relationships betweenwords in a sentence, regardless of their positions. This means that the model cancapture long-range dependencies between words, which is crucial for accuratelytranslating sentences from one language to another. For example, in translatingan English sentence to French, the self-attention network helps the Transformermodel to identify which words in the English sentence are most relevant to thewords being generated in the French translation, resulting in more accurate andcontextually appropriate translations. The Transformer model is built on a complexarchitecture. We will start by introducing the fundamental components (i.e. thescaled dot-product, self-attention networks, and masked self-attention networks)required to construct the Transformer model, and then proceed to provide a detailedexplanation of the model itself.
11.1 Scaled Dot-Product Similarity Measure
One way to measure the similarity between two vectors is to compute the dot-product between them. Consider the dot-product q · k of two vectors q and k eachof dimension dk :

q · k = dk∑
i=1 qiki (11.1)

DRAFT11.1. SCALED DOT-PRODUCT SIMILARITY MEASURE 133

Assume the following query and input vectors in a 3-dimensional space:
q = [0.8, 0.3, 0.5]

k1 = [0.9, 0.1, 0.4], k2 = [0.4, 0.7, 0.5], k3 = [0.7, 0.2, 0.6]Let us compute the dot-product similarity between the q and the three vectors
k1, k2, k3:

q · k1 = (0.8)(0.9) + (0.3)(0.1) + (0.5)(0.4) = 0.72 + 0.03 + 0.2 = 0.95
q · k2 = (0.8)(0.4) + (0.3)(0.7) + (0.5)(0.5) = 0.32 + 0.21 + 0.25 = 0.78
q · k3 = (0.8)(0.7) + (0.3)(0.2) + (0.5)(0.6) = 0.56 + 0.06 + 0.3 = 0.92We can rank the input vectors based on their similarity scores with q: k1 > k3 > k2Thus, vector 1 is the most relevant, followed by vector 3 and vector 2.As the scores tend to increase with the dimensionality of the query vector, the scaleddot-product is often used to normalize this effect:

q · k√dk = ∑dki=1 qiki√dk , (11.2)
If qi and ki are independently drawn from a distribution with zero mean and varianceσ 2, then: Since the mean of each qi and ki is zero:

E[qi] = 0, E[ki] = 0The expectation of the dot-product is:
E[q · k] = E

[dk∑
i=1 qiki

] = dk∑
i=1 E[qiki]

Since qi and ki are independent:
E[qiki] = E[qi]E[ki] = 0Therefore:

E[q · k] = 0To compute the variance of the dot-product, we consider the variance of each termqiki:

DRAFT11.2. MULTI-HEAD SELF-ATTENTION NETWORKS 134

Var(qiki) = E[(qiki)2]− (E[qiki])2Since E[qiki] = 0, we have:
Var(qiki) = E[q2i]E[k2i] = σ 2σ 2 = σ 4For the sum of dk independent products qiki, the variance is the sum of the variancesof each product:
Var(q · k) = dk∑

i=1 Var(qiki) = dkσ 4
The standard deviation of the dot-product grows with √dk . Without scaling, thevariance increases linearly with dk , leading to instability. Scaling by √dk normal-izes the variance to: Var(q · k√dk

) = dkσ 4dk = σ 4
Hence, this normalization keeps the variance of the dot-product scores consistent,independent of the dimension dk .
11.2 Multi-head Self-Attention Networks

Self-Attention Networks (SANs) form the foundation of Transformer models [37].These networks are designed to learn contextual relationships between input vec-tors and can effectively capture long-term dependencies, replacing the recurrentconnections used in Recurrent Neural Networks (RNNs). Additionally, SANs aresignificantly faster than RNNs because they operate in parallel.Consider an input matrix and a query vector: SANs calculate a similarity scorebetween the query vector and parts of the input matrix, giving more attention tosimilar parts. This score is then used to transform the input matrix into an outputvector. The output vector is a weighted sum (or average) of the input matrix, resultingin a richer representation than the original input.Mathematically, the Self-Attention process involves the following steps in matrixform:1. Calculate Query, Key, and Value vectors: For an input sequence X ∈ Rn×dmodel(where n is the sequence length and dmodel is the dimension of each inputvector), we linearly transform the input using weight matricesW Q ∈ Rdmodel×dk ,W K ∈ Rdmodel×dk , and W V ∈ Rdmodel×dv :
Q = XW Q (n × dk), K = XW K (n × dk), V = XW V (n × dv)

DRAFT11.2. MULTI-HEAD SELF-ATTENTION NETWORKS 135

2. Compute the attention scores: The attention score between two tokens isthe dot-product of their Query and Key vectors. We compute a score matrixA ∈ Rn×n:
A = QK T (n × dk)× (dk × n) = (n × n)

3. Scale the attention scores: To ensure stable gradients, the scores are scaledby the square root of the dimension of the key vectors, dk as discussed in theprevious section:
A = QK T√dk (n × n)

4. Apply the softmax function: To get the attention weights, we apply the softmaxfunction to the scaled scores. Then, we compute the attention output:
Z = Attention(Q,K , V) = softmax(QK T√dk

)V (n × n)× (n × dv) = (n × dv)(11.3)
Figure 11.1 illustrates the process of computing the attention mechanism for theinput query x2. It demonstrates how x2 interacts with other inputs in the sequenceto generate attention scores. These scores are used to weigh the value vectors,resulting in the output for z2. Ultimately, the attention mechanism captures relevantinformation from other inputs to produce a context-aware representation of x2. Theattention score αi for each time step is computed as:

α2i = exp(q⊤2 ki)∑j exp(q⊤2 kj) ,
where q2: Query vector for the input x2 and ki: Key vector at time step i.The output is a weighted combination of value vectors vi:

z2 =∑i α2ivi,
where vi is the value vector associated with the key ki.

DRAFT11.2. MULTI-HEAD SELF-ATTENTION NETWORKS 136

Figure 11.1: For the input query x2, self-attention generates an output vector z2.This vector z2 has a dimensionality of dv , which corresponds to the size of the valuevectors in the self-attention mechanism. The attention process computes a weightedsum of the value vectors, using attention scores based on the similarity between x2and other inputs. Ultimately, z2 represents the contextualized embedding for x2 afterthe attention mechanism.
It is possible to improve the self-attention performance by running i self-attentionblocks (i.e. multi-head attention) in parallel. This means that the key, query, andvalue matrices are split into a number of heads and projected. The individual splitsare then passed into a self-attention block as described above. The Multi-HeadSelf-Attention process involves the following steps in matrix form:

1. Split the input: For each head, we linearly transform the input X into Qi, Ki,and Vi using different weight matrices W Qi ∈ Rdmodel×dk , W Ki ∈ Rdmodel×dk , andW Vi ∈ Rdmodel×dv :
Qi = XW Qi (n × dk), Ki = XW Ki (n × dk), Vi = XW Vi (n × dv)

2. Compute the attention: For each head, compute the attention output:

DRAFT11.2. MULTI-HEAD SELF-ATTENTION NETWORKS 137

headi = Attention(Qi, Ki, Vi) (n × dv)
3. Concatenate the head: Concatenate the attention outputs from all heads. Ifthere are h heads and each head has an output dimension of dv , the concate-nated output has dimension n × (h · dv):

MultiHead(Q,K , V) = Concat(head1, head2, . . . , headh) (n × (h · dv))
4. Final linear transformation: Apply a final linear transformation to the con-catenated output using weight matrix W O ∈ R(h·dv)×dmodel :

MultiHead(Q,K , V) = Concat(head1, head2, . . . , headh)W O, (11.4)
where the final matrix shape is (n× (h·dv))× ((h·dv)×dmodel) = (n×dmodel)Figure 11.2 demonstrates the process of implementing multihead self-attention. Itshows multiple self-attention mechanisms operating in parallel. Each attention headprocesses the input independently and the outputs are later combined. This ap-proach helps the model capture different aspects of the input sequence.

DRAFT11.2. MULTI-HEAD SELF-ATTENTION NETWORKS 138

Figure 11.2: Multihead self-attention operates by utilizing multiple self-attentionmechanisms, with h attention heads working concurrently. Each attention headindependently processes the input, capturing different aspects of the sequence rela-tionships. These results are then combined and transformed through a linear layerto create the final output. This parallel processing allows the model to focus on di-verse features of the input simultaneously, enhancing its ability to capture complexdependencies.
11.2.1 Numerical Example for Self-AttentionConsider a simple example with a sequence of 2 inputs where the dimension of eachinput is 2. Here, dmodel = dx = dk = dv = 2.

1. Input sequence X :
X = [1 00 1] (2× 2)

2. Weight matrices W Q , W K , and W V :
W Q = W K = W V = [1 00 1] (2× 2)

3. Calculate Q, K , and V :

DRAFT11.2. MULTI-HEAD SELF-ATTENTION NETWORKS 139

Q = XW Q = [1 00 1] (2× 2)
K = XW K = [1 00 1] (2× 2)
V = XW V = [1 00 1] (2× 2)

4. Compute the attention scores A:
A = QK T = [1 00 1] [1 00 1]T = [1 00 1] (2× 2)

5. Scale the attention scores:
A = QK T√2 = 1√2

[1 00 1] = [0.707 00 0.707] (2× 2)
6. Apply the softmax function:

softmax(A) = [e0.707e0.707+e0 e0e0.707+e0e0e0.707+e0 e0.707e0.707+e0
] = [0.669 0.330.33 0.669] (2× 2)

7. Calculate the final attention output:
Attention(Q,K , V) = softmax(A)V = [0.669 0.330.33 0.669] [1 00 1] = [0.669 0.330.33 0.669] (2×2)
This example illustrates how self-attention works with simple values. In prac-tice, the dimensions and values would be larger and more complex.

11.2.2 Masked Self-AttentionMasked self-attention is a variant of the self-attention mechanism used primarilyin the decoder part of the Transformer model [37]. It ensures that the prediction fora particular position in the sequence does not depend on future positions. This iscrucial for autoregressive tasks like language modeling, where the model generatestokens one by one. Masked self-attention is also referred to as causal attentionbecause it ensures that the attention mechanism respects the causal structure of

DRAFT11.2. MULTI-HEAD SELF-ATTENTION NETWORKS 140

the sequence (i.e., the prediction at a given time step depends only on the previoustime steps).In masked self-attention, future tokens are masked out. This means that whencomputing the attention for a token at position t , the model only attends to tokensat positions ≤ t . The masked Self-Attention process involves the following steps inmatrix form:
1. Compute Queries, Keys, and Values:Q = XW Q, K = XW K , V = XW V
2. Compute Raw Attention Scores:

A = QK T√dk3. Apply the Mask: A mask matrix M is created, where Mij = −∞ if j > i andMij = 0 otherwise. The raw attention scores are then adjusted using thismask: Amasked = A+MThis operation effectively nullifies the influence of future tokens by settingtheir corresponding scores to −∞.4. Apply the Softmax Function:Attention(Q,K , V) = softmax(Amasked)V (11.5)
Consider an input sequence X = [x1, x2, x3] with corresponding query, key, and valuematrices Q,K , and V . We can compute the raw attention scores A as follows:

A = QK T√2 = a11 a12 a13a21 a22 a23a31 a32 a33


Then we build the mask matrix M :
M = 0 −∞ −∞0 0 −∞0 0 0


and compute the masked attention scores:

Amasked = A+M = a11 −∞ −∞a21 a22 −∞a31 a32 a33


DRAFT11.3. STACKING SELF-ATTENTION LAYERS 141

then the softmax is applied:
Attention(Q,K , V) = softmax(Amasked)V

This ensures that when computing the attention for the first token, only the firsttoken is considered; for the second token, only the first and second tokens areconsidered; and so on.Masked self-attention is crucial for tasks where the model needs to generate se-quences in an autoregressive manner, ensuring that the prediction for each tokendepends only on the previous tokens and not on future tokens. This mechanism isfundamental in the decoder of the Transformer model, enabling it to handle sequencegeneration effectively.
11.3 Stacking Self-Attention Layers
Stacking self-attention layers without non-linear transformations or feed-forwardnetworks between them results in a single linear transformation. This equivalencefollows from the associative property of matrix multiplication and the linearity of theself-attention mechanism. Let me provide a clearer mathematical derivation to showhow multiple stacked self-attention layers without feed-forward networks (FNN)can be equivalent to a single self-attention layer.A self-attention layer computes the output Z from an input matrix X ∈ Rn×dk usingtheConsider two self-attention layers stacked on top of each other. The output of thefirst layer is:

Z1 = Attention(Q1, K1, V1) = softmax(Q1K⊤1√dk
)V1

where:
Q1 = XW Q1 , K1 = XW K1 , V1 = XW V1Substituting these:
Z1 = softmax((XW Q1)(XW K1)⊤√dk

) (XW V1)
= AXW V1The input to the second layer is Z1, and its output is:

DRAFT11.3. STACKING SELF-ATTENTION LAYERS 142

Z2 = Attention(Q2, K2, V2) = softmax(Q2K⊤2√d
)V2

where:
Q2 = Z1W Q2 , K2 = Z1W K2 , V2 = Z1W V2Substituting Z1 from the first layer:

Q2 = AXW V1 W Q2Similarly:
K2 = AXW V1 W K2
V2 = AXW V1 W V2This is equivalent to a single self-attention layer with combined weights:

W Q = W V1 W Q2 , W K = W V1 W K2 , W V = W V1 W V2Now, let’s show how this can be reduced to a single self-attention layer. By com-bining the two layers into one, we observe that:
Z2 = Softmax((AXW V1 W Q2)(AXW V1 W K2)⊤√dk

)AXW V1 W V2 (11.6)
= Softmax((AXW Q)(AXW K)⊤√dk

)AXW V (11.7)
Therefore, the stacked self-attention layers can be seen as a single self-attentionlayer with weights that are the product of the individual layers’ weights. Addingnon-linearity through the use of feed-forward networks (FFN) enables stackingmultiple self-attention layers.
Self-Attention Networks ComplexityThe complexity of self-attention networks per layer is O(n2d) where n is the inputsequence length and d is the embedding dimension. The self-attention networkscompute the attention weights for each token with respect to every other token.Hence, it is O(n) operations for each token and therefore O(n2) for all the tokens.Moreover, the complexity of the number of sequential steps is O(1) where all noperations run in a single step (i.e. all the n tokens are processed in parallel).

DRAFT11.3. STACKING SELF-ATTENTION LAYERS 143

On the other hand, the complexity per layer is O(nd2) for RNNs where the previousstep’s hidden states with the weight matrix multiplication run in d2 operations (i.e.O(nd2) for n steps). In addition, the complexity of the number of sequential steps isO(n) where all n operations run in n steps.The self-attention mechanism has a complexity of O(n2) for all input tokens, whichcreates challenges in modeling long-term dependencies in Transformer models. Asa result, there is a limitation on the context window size in models like BERT [17]and GPT [38].
11.3.1 Position-wise Feed-Forward Network (FFN)Stacking self-attention layers without non-linear transformations or feed-forwardnetworks between them results in a single linear transformation. This equivalencefollows from the associative property of matrix multiplication and the linearity of theself-attention mechanism.The Feed-Forward Network (FFN) in Transformers is an essential component withineach self-attention block of the model. Each self-attention block of the Transformerarchitecture consists of a multi-head self-attention mechanism followed by a feed-forward network applied to each position independently. This feed-forward networkis responsible for further transforming the input features.The FFN consists of two linear transformations with a ReLU activation function inbetween. Given an input vector x, the FFN operation can be summarized as:

y = W2 ReLU(W1x + b1) + b2, (11.8)where x is the input vector of shape (dmodel), W1 is the first weight matrix of shape(dmodel, dff), b1 is the first bias vector of shape (dff), W2 is the second weight matrixof shape (dff, dmodel), b2 is the second bias vector of shape (dmodel), and y is theoutput vector of shape (dmodel). The ReLU(x) = max(0, x) activation function is usedfor the non-linear transformation. The FFN acts on the output of the attentionmechanism, which is in dmodel. By expanding to dff, the network can process andrefine information more thoroughly before reducing it back to dmodel1. Figure 11.3illustrates the position-wise FFN implementation.The term "position-wise Feed-Forward Network (FFN)" is used because the FFNis applied independently to each position in the input sequence. This means thatthe same FFN is used for every position in the sequence, processing each position’sfeatures without considering information from other positions. Equation (11.8) allowsthe model to learn complex transformations of the input features, enhancing itscapability to capture intricate patterns in the data.
1Typically, dff = 4dmodel

DRAFT11.4. THE TRANSFORMER MODEL 144

Figure 11.3: The position-wise FFN is implemented by mapping the input vector∈ Rdmodel to a higher-dimensional space ∈ Rdff , applying a non-linear activationfunction, and then projecting it back to a vector ∈ Rdmodel .
11.4 The Transformer Model

The Transformer model [37], revolutionized the field of natural language processing(NLP) by relying entirely on self-attention mechanisms and dispensing with re-current and convolutional layers. To grasp the Transformer model, it’s essential totackle sequential modeling tasks like language modeling. We’ll start by introducinglanguage modeling and then explore the encoder-decoder architecture, includingthe Transformer.
11.4.1 N-gram Language ModelingAn n-gram language model is a probabilistic model used for predicting the nextword in a sequence based on the previous n − 1 words. An n-gram is simply acontiguous sequence of n words from a given text or speech. The model calculatesthe probability of a word sequence based on these n-grams.A bigram language model uses a context of one word to predict the next word. Fora sequence of words w1, w2, . . . , wm, the probability of the sequence according tothe bigram model is given by:

DRAFT11.4. THE TRANSFORMER MODEL 145

P(w1, w2, . . . , wm) = P(w1) m∏
i=2 P(wi | wi−1), (11.9)

where P(wi | wi−1) is the probability of word wi occurring given the previous wordwi−1.Consider a simple corpus with the following sentences:
1. "I like pizza"
2. "I like pasta"
3. "I eat pizza"

We can compute the bigram probabilities using counts:
P(like | I) = Count("I like")Count("I") = 23
P(eat | I) = Count("I eat")Count("I") = 13

P(pizza | like) = Count("like pizza")Count("like") = 12Given the sentence "I like pizza", the probability can be computed as:
P("I like pizza") = P(I) · P(like | I) · P(pizza | like)The probability of a unigram like "I" is:

P(I) = Count(I)Nwhere Count(I) is the number of times the word "I" appears in the corpus and N isthe total number of words in the corpus.If P(I) is 39 , then:
P("I like pizza") = 13 · 23 · 12 = 19A trigram language model uses a context of two words to predict the next word. Fora sequence of words w1, w2, . . . , wm, the probability of the sequence according tothe trigram model is given by:

P(w1, w2, . . . , wm) = P(w1)P(w2 | w1) m∏
i=3 P(wi | wi−2, wi−1), (11.10)

DRAFT11.4. THE TRANSFORMER MODEL 146

where P(wi | wi−2, wi−1) is the probability of word wi occurring given the twopreceding words wi−2 and wi−1.Consider the same corpus:
1. "I like pizza"
2. "I like pasta"
3. "I eat pizza"

We can compute the trigram probabilities:
P(pizza | I like) = Count("I like pizza")Count("I like") = 12
P(pasta | I like) = Count("I like pasta")Count("I like") = 12Given the sentence "I like pizza", the probability can be computed as:

P("I like pizza") = P(I) · P(like | I) · P(pizza | I like)Using the previous example:
P("I like pizza") = 13 · 23 · 12 = 19For an n-gram language model, the general formula for a sequence w1, w2, . . . , wmis:

P(w1, w2, . . . , wm) = P(w1) · P(w2 | w1) · . . . · P(wm | wm−n+1, . . . , wm−1) (11.11)
This approach is used to approximate the probability of sequences in natural lan-guage processing tasks.
Smoothing in N-gram Language ModelsIn n-gram language models, smoothing is a technique used to handle the problemof zero probabilities for unseen n-grams. When building a language model, weoften encounter n-grams that do not appear in the training data, resulting in a zeroprobability for those n-grams. This can be problematic, especially for sequencesthat are rare or entirely absent in the training corpus.Smoothing adjusts the estimated probabilities to account for these unseen events,ensuring that no n-gram has a zero probability.

DRAFT11.4. THE TRANSFORMER MODEL 147

Laplace smoothing, also known as "add-one smoothing", is a simple technique thatadds a small amount (usually 1) to each count to prevent zero probabilities. For abigram language model, suppose we want to estimate the probability P(wi | wi−1),where wi is the current word and wi−1 is the preceding word.Without smoothing, the maximum likelihood estimate (MLE) of the bigram probabilityis:
P(wi | wi−1) = Count(wi−1, wi)Count(wi−1) ,

where:
• Count(wi−1, wi) is the number of times the bigram (wi−1, wi) appears in thetraining data.
• Count(wi−1) is the number of times the word wi−1 appears in the training data.

Laplace smoothing modifies this estimate by adding 1 to all bigram counts andadjusting the denominator accordingly:
PLaplace(wi | wi−1) = Count(wi−1, wi) + 1Count(wi−1) + Vwhere V is the size of the vocabulary (total number of unique words in the trainingdata). This modification ensures that every bigram has a non-zero probability, evenif it did not appear in the training data.Consider a small corpus:

1. "I like pizza"
2. "I like pasta"
3. "I eat pizza"

Assume our vocabulary V = {I, like, eat, pizza, pasta}, so V = 5. Let’s compute theprobability P(pizza | like) with Laplace smoothing:
PLaplace(pizza | like) = Count(like, pizza) + 1Count(like) + V = 1 + 12 + 5 = 27Without smoothing, if we had an unseen bigram, its probability would be zero, whichLaplace smoothing avoids.Given an n-gram model, the general formula for Laplace smoothing is :

PLaplace(wi | wi−n+1, . . . , wi−1) = Count(wi−n+1, . . . , wi) + 1Count(wi−n+1, . . . , wi−1) + V , (11.12)

DRAFT11.4. THE TRANSFORMER MODEL 148

where Count(wi−n+1, . . . , wi) is the count of the n-gram, Count(wi−n+1, . . . , wi−1) isthe count of the (n-1)-gram preceding wi, and V is the size of the vocabulary.While Laplace smoothing is straightforward, it is not always the most effectivemethod because it adds the same amount (1) to all counts, regardless of their fre-quency. This approach can overly penalize more frequent n-grams, leading to lessaccurate probability estimates. Other smoothing techniques, such as Good-Turingsmoothing [39] or Kneser-Ney smoothing [40, 41], are often preferred in practice.
11.4.2 Neural Language ModelingA "neural language model" uses neural networks to predict the probability of asequence of words in a sentence. Unlike traditional n-gram models, neural languagemodels can handle larger contexts and capture more complex patterns in the data byusing word embeddings and neural networks to represent and learn relationshipsbetween words.Given a sequence of words w1, w2, . . . , wn−1, the goal is to predict the next wordwn using a neural network. The probability of a sequence of words w1, w2, . . . , wnis defined as:
P(w1, w2, . . . , wn) = P(w1) ·P(w2 | w1) ·P(w3 | w1, w2) · . . . ·P(wn | w1, w2, . . . , wn−1)(11.13)A neural language model aims to compute each conditional probability P(wi |w1, w2, . . . , wi−1) using a neural network.
A Feed-Forward Language ModelThe most common architecture for a neural language model is a feedforward neuralnetwork or a recurrent neural network (RNN). Let’s describe a simple feedforwardneural language model:

1. Word Embedding Layer: Convert each word into a fixed-size vector represen-tation (embedding) using an embedding matrix. Suppose we have a vocabu-lary of size V and each word is represented by an embedding of size d. Theembedding matrix E is of size V × d.For a context window of size 3, given words w1, w2, w3, we first obtain theirembeddings:
e1 = E [w1], e2 = E [w2], e3 = E [w3]

where ei ∈ Rd.

DRAFT11.4. THE TRANSFORMER MODEL 149

2. Hidden Layer: Use a neural network layer with non-linear activation (e.g.,ReLU or sigmoid) to process the concatenated embeddings. We start by con-catenating the embeddings to form a single input vector:
x = [e1; e2; e3] ∈ R3d

Apply a hidden layer transformation:
h = tanh(Whx + bh)

where Wh ∈ Rm×3d is the weight matrix for the hidden layer, bh ∈ Rm is thebias vector, and h ∈ Rm is the hidden layer output.
3. Output Layer: Apply a softmax function to compute the probability distributionover the vocabulary for the next word. Compute the scores for each word inthe vocabulary:

z = Woh + bo,
where Wo ∈ RV×m is the output weight matrix, bo ∈ RV is the output biasvector, and z ∈ RV are the scores for each word in the vocabulary.Apply the softmax function to get the probability distribution over the vocab-ulary:

P(wn+1 | w1, w2, . . . , wn) = exp(zi)∑Vj=1 exp(zj)
where zi is the score corresponding to the word wi.

Let’s walk through a numerical example with a simple neural language model. Thevocabulary size V = 5 (words: w1, w2, w3, w4, w5), embedding dimension d = 2, andhidden layer size m = 3.Let the embedding matrix E be:
E =


0.1 0.30.4 0.20.5 0.80.6 0.90.7 0.1


For the input context (w2, w3, w4), the embeddings are:

DRAFT11.4. THE TRANSFORMER MODEL 150

e1 = E [w2] = [0.4, 0.2], e2 = E [w3] = [0.5, 0.8], e3 = E [w4] = [0.6, 0.9]Concatenate the embeddings:
x = [e1; e2; e3] = [0.4, 0.2, 0.5, 0.8, 0.6, 0.9]Suppose the weight matrix Wh and bias vector bh are:

Wh = 0.1 0.2 0.3 0.4 0.5 0.60.7 0.8 0.9 0.1 0.2 0.30.4 0.5 0.6 0.7 0.8 0.9
 , bh = [0.1, 0.2, 0.3]

Compute the hidden layer output:
h = tanh(Whx + bh)Plugging in the values:

Whx = (0.1 · 0.4 + 0.2 · 0.2 + 0.3 · 0.5 + 0.4 · 0.8 + 0.5 · 0.6 + 0.6 · 0.9)(0.7 · 0.4 + 0.8 · 0.2 + 0.9 · 0.5 + 0.1 · 0.8 + 0.2 · 0.6 + 0.3 · 0.9)(0.4 · 0.4 + 0.5 · 0.2 + 0.6 · 0.5 + 0.7 · 0.8 + 0.8 · 0.6 + 0.9 · 0.9)
 + 0.10.20.3


Calculate:

Whx ≈
1.491.562.71

 , h = tanh([1.49, 1.56, 2.71]) ≈ [0.90, 0.91, 0.99]
Assume:

Wo =


0.1 0.2 0.30.4 0.5 0.60.7 0.8 0.91.0 1.1 1.21.3 1.4 1.5

 , bo = [0.1, 0.1, 0.1, 0.1, 0.1]
Compute the output scores:

z = Woh + bo ≈ [0.669, 1.509, 2.349, 3.189, 4.029]Apply the softmax function:
P(wi | w2, w3, w4) = exp(zi)∑Vj=1 exp(zj)

DRAFT11.4. THE TRANSFORMER MODEL 151

For example:
P(w1) = exp(0.669)exp(0.669) + exp(1.509) + exp(2.349) + exp(3.189) + exp(4.029) ≈ 0.020

This is a simplified example to illustrate the mechanics of neural language modeling.The key advantage is that neural models, especially those with recurrent or self-attention mechanisms, can capture longer-range dependencies in text compared totraditional n-gram models.
An RNN Language ModelRNNs are particularly useful for modeling sequential data because they maintaina hidden state that captures information about the past inputs. Hence, they arecommonly used for language modeling.An "RNN language model" uses the hidden state of the network to predict the nextword in a sequence. Given a sequence of words w1, w2, . . . , wn, the RNN computesthe probability of each word given the previous words:

P(w1, w2, . . . , wn) = n∏
i=1 P(wi | w1, w2, . . . , wi−1)

The hidden state at each step t is updated based on the current input word and theprevious hidden state:
ht = f (Wh · xt + Uh · ht−1 + bh),where ht ∈ Rm is the hidden state at time step t , xt ∈ Rd is the embedding ofthe input word wt , Wh ∈ Rm×d is the weight matrix for the input, Uh ∈ Rm×m isthe weight matrix for the hidden state, bh ∈ Rm is the bias vector, and f (·) is anon-linear activation function (e.g., tanh).The output layer computes the probability of the next word:

ot = V · ht + bo
P(wt+1 | w1, w2, . . . , wt) = softmax(ot)where V ∈ RV×m is the weight matrix for the output layer, and bo ∈ RV is the biasvector for the output layer.

DRAFT11.4. THE TRANSFORMER MODEL 152

Masked Self-Attention Language ModelA "Masked Self-Attention Based Language Model" predicts the next word in a se-quence by leveraging self-attention mechanisms that are restricted to focus only onthe preceding words in the sequence. This approach ensures that the model doesnot have access to "future" words when predicting the next word, which is crucial forcausal (auto-regressive) language modeling. The key steps and equations for thisprocess are described below:Given an input sequence of words [w1, w2, . . . , wn], the first step is to convert thesewords into their corresponding embeddings. Let:
X = [x1, x2, . . . , xn] ∈ Rn×dwhere xi ∈ Rd is the embedding of word wi and d is the dimensionality of theembedding.For each word wi, we compute the masked self-attention score by masking thefuture words (i.e., setting the attention weights for future words to zero). Let Q, K ,and V represent the Query, Key, and Value matrices:

Q = XW Q, K = XW K , V = XW V
where W Q,W K ,W V ∈ Rd×dk are learnable weight matrices and dk is the dimen-sionality of the Key/Query space. The attention scores are computed using thescaled dot-product:

Attention(Q,K , V) = Softmax(QK⊤√dk +M)V
where M ∈ RT×T is a masking matrix such that Mij = −∞ if j > i (to preventattending to future words), and Mij = 0 otherwise. Please note that the Softmax isapplied row-wise.The attention weights are computed as:

A = Softmax(QK⊤√dk +M)
So the masked self-attention output Z is:

Z = AV = Softmax(QK⊤√dk +M)V
The output Z of the self-attention layer is then used to predict the next word. Fornext-word prediction, a linear layer followed by a softmax function is used. LetWout ∈ Rd×V be the output weight matrix where V is the vocabulary size. The final

DRAFT11.4. THE TRANSFORMER MODEL 153

softmax layer gives the probability of each word in the vocabulary being the nextword in the sequence:
P(v) = exp(ZWout)∑Vj=1 exp(ZWout)This is a basic application of masked self-attention for language modeling. In thefollowing section, we will explore the Transformer model, which is designed forsequence-to-sequence tasks. The Transformer consists of an encoder and a decoderand serves as an example of conditional language modeling.

11.4.3 Conditional Language ModelingConditional language modeling involves predicting the next word in a sequencegiven both the previous context and an additional condition, such as another se-quence. Mathematically, this can be represented as finding the probability of atarget sequence Y = (y1, y2, . . . , yn) given a source sequence X = (x1, x2, . . . , xm).The objective is to maximize the conditional probability:
P(Y | X) = P(y1, y2, . . . , yn | x1, x2, . . . , xm)Using the chain rule, this can be decomposed as:
P(Y | X) = n∏

t=1P(yt | y1, y2, . . . , yt−1, X)
Here, each word yt in the target sequence Y is predicted based on both the pre-ceding words in Y and the entire source sequence X .An elementary encoder-decoder model [42] utilizes an RNN to encode the inputsequence into a hidden representation. The final hidden state of the encoder isthen passed to the decoder as its initial state. The decoder, which is also an RNN,generates the output sequence step by step. Each output is conditioned on theprevious output and the last hidden state from the encoder. This structure allowsthe decoder to leverage both the encoded input and prior generated tokens. Theencoder-decoder pair works together to produce the final output sequence as shownin Figure 11.4.When the input sequence is particularly long, the encoder must compress all theinformation into a single vector, which increases the likelihood of losing importantdetails. As the encoder tries to capture everything in one vector, it can struggleto retain the full context of the sequence. This often leads to the model forgettingcritical information from earlier in the input. This issue is especially prominentin RNN-based encoder-decoder models. The bottleneck of relying on one hiddenstate to store all information results in degraded performance on longer sequences.

DRAFT11.4. THE TRANSFORMER MODEL 154

Addressing this limitation is crucial for improving the model’s accuracy on complex,lengthy inputs.A solution to the issue of forgetting in encoder-decoder models is to introduce across-attention layer between the encoder and decoder. This allows the decoder tofocus on specific tokens from the source sequence that are most important for eachstep of the output. At every generation step, the decoder can attend to differentparts of the input sequence, ensuring it captures relevant information. By examiningthe attention weights, we can see which tokens the decoder emphasizes during itsdecision-making process. This mechanism helps the decoder leverage importantsource tokens dynamically. Overall, cross-attention improves the model’s ability tohandle longer and more complex sequences. We will explore cross-attention in moredetail when discussing the Transformer model, where it plays a key role in allowingthe decoder to attend to the encoder’s output more effectively at each generationstep.

Figure 11.4: An elementary encoder-decoder model uses an RNN to transform theinput sequence into a hidden representation. The encoder’s final hidden state istransferred to the decoder as its starting point. The decoder, also an RNN, generatesthe output sequence in a step-by-step manner, with each output relying on theprevious one and the encoder’s last hidden state. This setup enables the decoderto incorporate both the encoded input and previously generated outputs to producethe final sequence.
The Transformer model is an example of a conditional language model that usesself-attention mechanisms to capture dependencies in both the source sequence Xand the target sequence Y . The Transformer consists of two main parts: an encoderand a decoder.The encoder processes the source sequence X and outputs a sequence of context-aware representations. Let’s denote the encoder’s input embeddings as EX =(eX1 , eX2 , . . . , eXm). The encoder applies multiple layers of self-attention and feed-forward networks to transform these embeddings into hidden states:

DRAFT11.4. THE TRANSFORMER MODEL 155

HX = Encoder(EX)where HX = (hX1 , hX2 , . . . , hXm) are the context-aware representations of the inputsequence.The decoder generates the target sequence Y by predicting each word yt based onits own previous words and the encoded representations from the source sequence.The decoder takes two inputs: the encoder’s outputs HX and the embeddings of thetarget sequence up to step t − 1, denoted by EY<t = (eY1 , eY2 , . . . , eYt−1).The decoder also consists of multiple layers of self-attention and feedforward net-works, and its output at step t is:
HYt = Decoder(EY<t ,HX)where HYt is the hidden state for time step t . Finally, the conditional probability ofthe next word yt is computed as:

P(yt | y1, y2, . . . , yt−1, X) = softmax(WoHYt)where Wo is the output projection matrix.For example, consider a translation task where we want to translate the Englishsentence "I love you" (source sequence X) into French ("Je t’aime"). The encoderprocesses the source sentence to create context-aware representations. Then, thedecoder starts generating the target sequence "Je", "t’", "aime" step-by-step. At eachstep t , the decoder uses both the previously generated words and the encoder’soutput to predict the next word until the full translation is generated.

DRAFT11.4. THE TRANSFORMER MODEL 156

The Transformer Architecture

Figure 11.5: The Transformer encoder-decoder model consists of two main compo-nents: an encoder that processes input sequences using self-attention and feed-forward networks, and a decoder that generates output sequences while utilizingmasked self-attention and encoder-decoder attention (i.e. cross-attention). Boththe encoder and decoder are composed of multiple stacked layers, with positionalencodings added to embeddings to maintain token order.

DRAFT11.4. THE TRANSFORMER MODEL 157

The Transformer model consists of an encoder-decoder architecture as shown inFigure 11.5. Both the encoder and decoder are composed of multiple identicallayers. Since the Transformer model doesn’t have any recurrence or convolution,it lacks a way to handle the order of the sequence. To overcome this, positionalencodings are added to the input embeddings to give the model information aboutthe position of the tokens in the sequence2:
PE(pos,2i) = sin (pos100002i/dmodel

)
PE(pos,2i+1) = cos (pos100002i/dmodel

) ,
where PE(pos, i) is the positional encoding at position pos and dimension i, dmodelis the dimensionality of the model, pos is the position of the token in the sequence,and i is the dimension index (0 to dmodel− 1). Figure 11.6 illustrates how sequenceorder information is incorporated into the token embeddings to produce the finalsequence embeddings used by the Transformer model. Figure 11.7, presents anexample of sinusoidal positional embeddings. These embeddings use sine and cosinefunctions to encode position information into the sequence. The sinusoidal functionsensure that each position has a unique representation. This approach helps maintainsequence order in the model’s input.

2For more information about positional encoding, please check this page https://
machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

DRAFT11.4. THE TRANSFORMER MODEL 158

Figure 11.6: Positional encoding is used to incorporate sequence order information,as Transformers do not inherently capture the order of elements in a sequence.

Figure 11.7: The sinusoidal positional embedding matrix represents a sequence oflength 50 with a dimensionality of 256. Each position in the sequence is uniquely en-coded using sine and cosine functions. These embeddings provide position-relatedinformation to the model, helping it understand the order of elements in the se-quence. The resulting matrix has 50 rows, each containing a 256-dimensional em-bedding that corresponds to a specific position in the sequence.
The Transformer architecture given by

• Encoder

DRAFT11.4. THE TRANSFORMER MODEL 159

Input Embedding + Positional Encodingfor each layer l :X̂ l = LayerNorm(X l−1 + MultiHead(X l−1, X l−1, X l−1))X l = LayerNorm(X̂ l + FFN(X̂ l))Output of Encoder = XN
• Decoder

Input Embedding + Positional Encodingfor each layer l :Ŷ l = LayerNorm(Y l−1 + MaskedMultiHead(Y l−1, Y l−1, Y l−1))Ỹ l = LayerNorm(Ŷ l + MultiHead(Ŷ l, XN , XN))Y l = LayerNorm(Ỹ l + FFN(Ỹ l))Output of Decoder = YN
• Final Linear and Softmax LayerThe output of the decoder is transformed into the final output probabilitiesthrough a linear layer followed by a softmax function:

Output Probabilities = softmax(YNWfinal + bfinal)
The architecture has three new ideas:

1. Add & Norm: involves applying a residual connection followed by layer nor-malization. It is given by:
LayerNorm(X + SubLayer(X)) (11.14)

Residual connections, also known as skip connections shown in Figure 11.8,are a crucial component in deep neural networks, including the Transformerarchitecture. They were introduced by He et al. in their work on ResNet [43].In general, gradients can become extremely small during backpropagation invery deep networks, making it difficult for the network to learn. This is knownas the vanishing gradient problem. Residual connections allow gradients toflow more directly through the network, helping to mitigate this issue. Byproviding an alternative path for the gradient, they ensure that the learningsignal can reach earlier layers more effectively. Moreover, the Transformersrely on positional encodings to maintain the order of the sequence. Hence,

DRAFT11.4. THE TRANSFORMER MODEL 160

residual connections help preserve this positional information throughout thenetwork.

Figure 11.8: The residual connections allow the original input to bypass one ormore layers and then add it back to the output of those layers, which helps mitigatethe problem of vanishing gradients and improves model convergence.
To demonstrate the mathematical utility of residual connections, let’s calculatethe derivative with respect to the input of a residual network. We start with theloss function E defined over the output y. Let’s denote the loss as a functionof the output:

E = E (y, ytrue), (11.15)
where ytrue is the true output.Given the residual network defined as:

y = F (x,W) + x (11.16)
We can apply the chain rule to compute the gradient of the loss with respectto the input x:

DRAFT11.4. THE TRANSFORMER MODEL 161

∂E∂x = ∂E∂y · ∂y∂x (11.17)
Hence,

∂y∂x = JF + I, (11.18)
where JF = ∂F (x,W)∂x is the Jacobian matrix of the residual function and I is theidentity matrix.Thus, we can rewrite the derivative of the loss with respect to the input as:∂E∂x = ∂E∂y · (JF + I) (11.19)
This equation highlights how the gradients from the loss propagate throughboth the residual function and the identity mapping, improving the flow ofgradients during backpropagation in deep networks.2. In Layer Normalization3, each input x is normalized by subtracting the meanand dividing by the standard deviation, and then scaled and shifted by learn-able parameters γ and β .Given an input vector x with dimensionality d:Compute the Mean:

µ = 1d d∑
i=1 xiCompute the Variance:

σ 2 = 1d d∑
i=1 (xi − µ)2

3Another form of normalization is Batch Normalization (BN) which normalizes the input to a layerover a mini-batch of data. This is done by using the mean and variance statistics computed from themini-batch during training. This normalization is given by:
x̂i = xi − 1m∑mi=1 xi√ 1m∑mi=1(xi − µB)2 + ε ,

where m is the batch size, and xi are the inputs in the batch. Since BN relies on batch statistics, itcan be problematic in sequence models due to variable sequence lengths and smaller batch sizes forlonger sequences. This leads to noisy estimates of the mean and variance, resulting in less effectivenormalization. On the other hand, layer normalization is more suited for sequence models because itnormalizes across the features for each sequence element independently, avoiding issues related tobatch statistics.

DRAFT11.4. THE TRANSFORMER MODEL 162

Normalize the Input: x̂i = xi − µ√σ 2 + εHere, ε is a small constant added to the variance to avoid division by zero.Scale and Shift: yi = γx̂i + βHere, γ and β are learnable parameters. After normalization (x̂i), the nor-malized values x̂i have a mean of 0 and a variance of 1. The final outputyi = γx̂i+β will have the mean and variance determined by γ and β . Specif-ically: The scaling by γ and shifting by β do not directly enforce a specificmean or variance on y. Instead, they allow the model to adjust the normalizedoutput flexibly.
3. Cross-attention (i.e. Encoder-Decoder Attention): This layer allows the de-coder to focus on appropriate parts of the input sequence, using the encoder’soutput. It was given by

MultiHead(Ŷ l, XN , XN)),
where the K and V are from one sequence and Q is from another sequence. Itwas originally introduced in [44, 45] for a machine translation application but itcan be used for other applications where the encoder is from speech or image.At different stages, the decoder may need to focus on various source tokensthat are most relevant to that particular step. By looking at the attentionweights, we can identify which source tokens the decoder uses, as illustratedin Figure 11.9. The two examples demonstrate that the attention mechanismhas established a (soft) alignment between source and target tokens, showingthat the decoder concentrates on the source tokens being translated at thatmoment.

DRAFT11.5. TRAINING AND INFERENCE FOR ENCODER-DECODER
FRAMEWORK 163

Figure 11.9: The attention weights in the cross-attention module can be used toidentify the alignments between target tokens and source tokens. In this example,we have one attention head, and an attention score is calculated by applying amulti-layer perceptron (MLP) to the encoder and decoder state vectors. Specifically,the score is computed as score(q, k) = wT
2 tanh(W1[q, k]) [44]. This is referred to asBahdanau’s attention scoring function, while in Transformers, we utilize a scaleddot-product attention scoring function.

This detailed architecture highlights the key components and processes involvedin the Transformer model, showcasing its ability to effectively handle long-rangedependencies in sequences through self-attention mechanisms.Attention mechanisms and Recurrent Neural Networks (RNNs) are two powerfulapproaches in the field of deep learning, particularly for sequence modeling taskssuch as natural language processing. Table 11.1, shows a detailed comparison ofattention mechanisms and RNNs:
11.5 Training and Inference for Encoder-Decoder Framework
In a Transformer model, the training objective is typically designed for sequence-to-sequence tasks such as machine translation, text generation, or other conditionallanguage modeling tasks. The objective is to minimize the difference between thepredicted output sequence and the ground truth sequence.
11.5.1 Cross-Entropy Loss for Transformer ModelsGiven a dataset with input sequences X and corresponding target sequences Y , themodel is trained to minimize the cross-entropy loss between the predicted proba-bility distribution and the true distribution over possible output tokens.

DRAFT11.5. TRAINING AND INFERENCE FOR ENCODER-DECODER
FRAMEWORK 164Let X = (x1, x2, . . . , xm) represent the input sequence and Y = (y1, y2, . . . , yn) rep-resent the corresponding target sequence, where n is the length of the sequenceand yi represents the token at position i in the target sequence.The Transformer predicts the probability distribution over the vocabulary P(yi |X , y1:i−1) for each time step i by using the self-attention mechanism and feedforwardneural networks. The goal is to maximize the likelihood of the correct sequence Ygiven the input sequence X .The training objective can be formulated as minimizing the cross-entropy loss:

E = − n∑
i=1 logP(yi | X , y1:i−1), (11.20)

where P(yi | X , y1:i−1) is the probability predicted by the model for the token yiat position i, conditioned on the input sequence X and the previously generatedtokens y1:i−1 and n is the length of the target sequence.The model is trained using backpropagation to minimize the cross-entropy loss E .The gradients with respect to the model parameters (e.g., weights in the attentionlayers and feedforward networks) are computed and updated using an optimizer likeAdam.In summary, the training objective for a Transformer model is to minimize the cross-entropy loss over the predicted probability distributions for the target sequence,ensuring that the model generates the most likely correct sequence given the input.
11.5.2 Inference for Transformer ModelsThe transformer model uses either greedy search or beam search during inference.Greedy search selects the highest probability token at each step to generate thesequence, which is fast but may not yield the best result. Beam search, on the otherhand, explores multiple possible sequences by keeping the top-k candidates at eachstep, leading to better-quality results. However, beam search is more computation-ally intensive compared to greedy search. Inference in the model halts when itreaches a predetermined maximum number of steps. Alternatively, the generationcan also terminate when the model outputs the "EOS" token, signaling the end of thesequence. This mechanism ensures that the output remains concise and relevant.By using these criteria, the model effectively manages the length of the generatedsequences.In Encoder-Decoder or sequence-to-sequence (Seq2Seq) models, given an inputsequence X = [x1, x2, ..., xm], the goal is to generate an output sequence Y =[y1, y2, ..., yn]. Greedy search is the simplest approach where, at each time step,the word with the highest probability is chosen. This can be represented mathe-matically as:

DRAFT11.5. TRAINING AND INFERENCE FOR ENCODER-DECODER
FRAMEWORK 165

yi = argmaxyi P(yi | y1, y2, ..., yi−1, X) (11.21)
The probability P(yi | y1, ..., yi−1, X) is computed by the decoder at each time step.This approach may lead to suboptimal solutions because it doesn’t explore othersequences that may have higher overall probability.Beam search is an improvement over greedy search. Instead of selecting the bestword at each step, beam search maintains the top-k candidate sequences (beamwidth) at each time step. At every time step, for each of the top-k candidates, itexpands the next possible tokens and selects the top-k from the expanded list basedon the cumulative probability. Figure 11.10 depicts the beam search algorithm witha beam width of 2 and a sequence length of 3. It shows how the algorithm explorespotential sequences. The limited width allows for a focused search. Overall, thesequence length is set to 3, indicating the number of steps in the search process.Let S (l) = [y(l)1 , y(l)2 , ..., y(l)i] represent the candidate sequences at time step i, wherel is the index for beam search (i.e., there are k candidate sequences). The beamsearch objective is to maximize:

S (i) = argmaxS (i)
i∑
j=1 logP(y(l)j | y(l)1 , y(l)2 , . . . , y(l)j−1, X) (11.22)

DRAFT11.6. ASSIGNMENT 166

Figure 11.10: An illustration of a beam search algorithm featuring a sequence lengthof 3 and a beam width of 2.
Greedy search can get stuck in local optima because it only considers the immediatenext step. Beam search mitigates this by maintaining multiple candidates at eachstep, but at the cost of increased computation. A comparison between the greedysearch and beam search is summarized in Table 11.2.
11.6 Assignment
Implement a neural machine translation algorithm using the Transformer model usingthe Keras deep learning library and Google colab. To load the dataset, please visit
https://github.com/SamirMoustafa/nmt-with-attention-for-ar-to-en/blob/
master/ara_.txt.

https://github.com/SamirMoustafa/nmt-with-attention-for-ar-to-en/blob/master/ara_.txt
https://github.com/SamirMoustafa/nmt-with-attention-for-ar-to-en/blob/master/ara_.txt

DRAFT11.6. ASSIGNMENT 167

Aspect Recurrent Neural Networks
(RNNs) Attention Mechanisms

Overview

- Sequential Processing: Processesinput sequences one element at atime.- Recurrence: Maintains a hiddenstate capturing information aboutprevious elements.- Variants: Includes LSTMs andGRUs for long-range dependencies.

- Direct Interaction: Accesses allelements of the input sequence ateach time step.- Weighted Sum: Computes aweighted sum of input elementsusing a learned attentionmechanism.
Pros

1. Naturally suited for temporalsequences.2. Encodes entire sequence into acompact hidden state.
1. Fully parallelizable, leading tofaster training times.2. Handles long-rangedependencies effectively.3. Provides insights into modelfocus, enhancing interpretability.

Cons

1. Cannot be easily parallelized;slow training.2. Challenges with long-rangedependencies.3. Susceptible to gradient issues(vanishing/exploding).
1. Computationally expensive forlong sequences.2. High memory usage for storingattention weights.

Performance and
Efficiency

- Slower training speed due tosequential computation.- More compact memory footprintfor hidden states.
- Much faster training due toparallelization.- Requires more memory forattention weights.

Flexibility and
Usability

- Good for sequential dataapplications.- Limited interpretability comparedto attention mechanisms.
- Contextually aware of the entireinput sequence.- Natural way to visualize modelfocus, aiding interpretability.

Conclusion
- Suited for tasks where sequentialdata is crucial, but struggles withlong-range dependencies.

- Excel at capturing long-rangedependencies and context,becoming the go-to approach formany NLP tasks.
Table 11.1: Comparison of Attention Mechanisms and RNNs.

DRAFT11.6. ASSIGNMENT 168

Table 11.2: Comparison of Greedy Search and Beam Search
Method Pros Cons
Greedy Search Simple, fast, and compu-tationally efficient. Suboptimal in manycases since it doesn’texplore alternative se-quences.
Beam Search Explores multiple possi-ble sequences, providingbetter quality results.

More computationallyexpensive; still notguaranteed to find theglobal optimum.

DRAFT
169

DRAFT12.1. DISCRETE-TIME STATE SPACE MODEL 170

12. State Space Models

Finally, we make some remarks onwhy linear systems are soimportant. The answer is simple:because we can solve them!— Richard Feynman
State Space Models (SSMs) employ linear recurrence mechanisms, a characteristicthat contrasts with the non-linear recurrent structures found in the Recurrent Neu-ral Networks (RNNs) described in Chapter 10. In this chapter, we explore structuredstate space models (S4) and selective state space models (S6). These models en-hance the ability to capture long-range dependencies in time-series and text data.
12.1 Discrete-Time State Space Model
The Structured State Space Sequence Model (S4) is a deep learning architecturedesigned for efficient long-sequence modeling. It combines continuous-time statespace models (SSMs) with structured parameterizations and HiPPO (High-orderPolynomial Projection Operators) theory. The core of S4 is a linear time-invariant(LTI) system described by: dh(t)dt = Ah(t) + Bx(t) (12.1)

y(t) = Ch(t) + Dx(t), (12.2)where:- h(t) ∈ RN is the hidden state at time t ,- x(t) ∈ R is the input at time t ,- y(t) ∈ R is the output at time t ,- A ∈ RN×N is the state transition matrix,- B ∈ RN×1 is the input matrix,

DRAFT12.1. DISCRETE-TIME STATE SPACE MODEL 171

- C ∈ R1×N is the output matrix,- D ∈ R is the skip connection (optional).
To be able to use a discrete input sequence, the bilinear transformation discretizesthe continuous-time state-space model:dh(t)dt ≈ hk − hk−1∆ , (12.3)
where ∆ is the discretization step size (sampling interval).Substituting this into the state equation:

hk − hk−1∆ = A(hk + hk−12
) + B (xk + xk−12) (12.4)

Rearranging terms to solve for hk :
hk − hk−1 = ∆2 A(hk + hk−1) + ∆2B(xk + xk−1) (12.5)

Collecting hk terms on the left-hand side:
hk − ∆2 Ahk = hk−1 + ∆2 Ahk−1 + ∆2B(xk + xk−1) (12.6)

Factor out hk : (I − ∆2 A
)hk = (I + ∆2 A

)hk−1 + ∆2B(xk + xk−1) (12.7)
Solving for hk :

hk = (I − ∆2 A
)−1(I + ∆2 A

)hk−1 +(I − ∆2 A
)−1 ∆2B(xk + xk−1) (12.8)

We approximate xk ≈ xk−1:
hk = (I − ∆2 A

)−1(I + ∆2 A
)hk−1 +(I − ∆2 A

)−1 ∆Bxk (12.9)
Hence:

hk = Ahk−1 + Bxk , (12.10)and yk = Chk + Dxk , (12.11)
where A = (I − ∆2A)−1 (I + ∆2A), B = (I − ∆2A)−1 ∆B and C = C .

DRAFT12.1. DISCRETE-TIME STATE SPACE MODEL 172

In addition to bilinear discretization, the zero-order hold (ZOH) discretization canbe utilized as well. It assumes that the sampled signal remains constant betweenconsecutive sampling points. For the ZOH discretization, the A, B, C are given byA = eA∆ , B = (∆A)−1(A − I)∆B, and C = C .
12.1.1 Training SSMsInstead of processing sequences step-by-step (like RNNs), SSMs exploit their lineartime-invariant (LTI) property to convert the recurrent state-space equations into aglobal convolution kernel. This kernel allows parallel computation of outputs acrossthe entire sequence, drastically speeding up training.The convolution kernel K is derived from the discretized system given in Equa-tion 12.10 and Equation 12.11:- At k = 0: h0 = B · x0, y0 = CBx0- At k = 1: h1 = ABx0 + Bx1, y1 = CABx0 + CBx1- At k = m: hm = AmBx0 + Am−1Bx1 + · · · + Bxm, ym = CAmBx0 + CAm−1Bx1 +· · ·+ CBxm
Thus, the sequence of outputs {y0, y1, y2, . . . } is given by, excluding Dxk (handledseparately): y = x ∗ K , (12.12)where K = [CB, CAB, CA2B, . . . , CAL−1B] , (12.13)where L is the sequence length.The convolution x ∗K is computed efficiently using the Fast Fourier Transform (FFT):

y = F−1 (F (K)⊙F (x)) + Dx, (12.14)
reducing complexity from O(L2) (naive convolution) to O(L log L).Unlike RNNs, during the training phase of the S4 model, a convolutional architectureis employed to optimize the learning process, enabling parallel computation acrossinput sequences for enhanced efficiency. By processing entire sequences simulta-neously through convolutional operations, the model accelerates parameter updatesand captures long-range dependencies effectively without gradient vanishing/explo-sion. This approach leverages the inherent parallelism of convolutional setups toreduce training time while maintaining robust performance. However, during infer-ence, the model transitions to a recurrent formulation, which processes inputs step-by-step rather than in bulk. This recurrent mode allows for real-time or sequentialtask execution, as it generates outputs incrementally with minimal computationaloverhead at each step. The shift from convolutional training to recurrent inference

DRAFT12.2. HIPPO INITIALIZATION FOR S4 MODELS 173

ensures both efficient learning and streamlined deployment, balancing speed duringtraining with adaptability in practical applications. On the other hand, precomputingK for long sequences requires significant memory (mitigated by chunking).
12.2 HiPPO Initialization for S4 Models
A standard state-space model (SSM) demonstrates weak empirical performance andstruggles to capture long-range dependencies effectively. One possible explanationis that linear first-order ordinary differential equations (ODEs) inherently solve toexponential functions, leading to gradients that scale exponentially with sequencelength. This issue also arises from their formulation as a linear recurrence, whererepeatedly applying a recurrent matrix results in the well-known vanishing or ex-ploding gradient problem commonly observed in recurrent neural networks (RNNs).The HiPPO framework initializes A to optimally project historical input x(t) ontopolynomial bases (e.g., Legendre polynomials). The HiPPO-LegS [46] matrix forscaled Legendre basis is:

Ank = −


(2n+ 1)1/2(2k + 1)1/2 if n > k,n+ 1 if n = k,0 otherwise.
This allows the state h(t) to compress the history of x(t) into coefficients of anorthogonal polynomial basis.To reduce computational complexity, A is constrained to a diagonal plus low-rank(DPLR) structure: A = Λ − PP∗,where Λ ∈ CN×N is diagonal, and P ∈ CN×r is low-rank. Hence, this enables O(N)parameters instead of O(N2) and efficient computation via conjugate symmetry andFFT.Earlier research demonstrated that replacing a randomly initialized state-spacemodel (SSM) matrix A with the HiPPO matrix significantly enhanced performanceon the sequential MNIST classification benchmark, increasing accuracy from 60% to98%.
12.3 Selective State Space (S6) Models
In traditional SSMs (e.g., S4), the convolution form arises because the system islinear time-invariant (LTI), meaning A, B, and C are fixed and do not depend on theinput or time. Selective State Space (S6) Models [47], or Mamba models, introducesa selection mechanism to make the SSM more flexible and efficient. In particular,

DRAFT12.3. SELECTIVE STATE SPACE (S6) MODELS 174

B and C are input-dependent, breaking the LTI assumption in Mamba models. Thismeans the convolution form must be adapted to account for the time-varying natureof B and C . The selection mechanism modifies the matrices B and C based on theinput xk . This is achieved through learned projections:
Bk = B · LinearB(xk)Ck = C · LinearC (xk)where LinearB and LinearC are learned linear transformations and Bk and Ck areinput-dependent matrices. Hence, the Mamba model is given by
hk = Ahk−1 + Bkxk (12.15)yk = Ckhk + Dxk (12.16)Because Bk and Ck vary with time, the convolution kernel K is no longer fixed.Instead, the output y can be expressed as a time-varying convolution:
yk = k∑

i=1 CkAk−iBixi (12.17)
Here, the kernel K is implicitly defined by the time-dependent terms Ck and Bi.This formulation is more complex than the traditional SSM convolution because thekernel depends on both the current time step k and the past time steps i.Mamba computes the hidden states {ht} efficiently using a parallel scan algorithm(similar to prefix sums), enabling parallel training despite the sequential recurrence:hk = A · hk−1 + Bk · xk .This avoids O(L2) complexity and leverages modern hardware (GPUs/TPUs).1The parallel scan algorithm leverages the associative property of linear recurrenceto hierarchically compose transformations:

1Consider the linear recurrence relation in Mamba:
ht = Aht−1 + BtxtFor a sequence of length L, the hidden states can be unrolled explicitly:

ht = Ath0 + t∑
k=1 At−kBkxkA naive parallel implementation would attempt to compute each ht independently by:1. Precomputing all powers of A: Computing A1, A2, . . . , AL requires L matrix multiplications. How-ever, to avoid sequential computation, one might compute all At−k terms directly, leading toO(L2) operations since there are L × t terms for t = 1, . . . , L.2. Summing over all terms for each ht : For each ht , the sum ∑tk=1 At−kBkxk involves t matrix-

DRAFT12.3. SELECTIVE STATE SPACE (S6) MODELS 175

• Associative Reformulation: The recurrence can be viewed as applying a linearoperator Tk = (A, Bkxk) to the state hk−1. These operators compose associa-tively: Ti ◦ Tj = (A, Bixi) ◦ (A, Bjxj) = (A2, ABixi + Bjxj),
where (T1 ◦ T2) ◦ T3 = T1 ◦ (T2 ◦ T3).2• Tree-Based Computation: The scan algorithm proceeds in log L layers: Layer1: Compose adjacent pairs (T1 ◦T2), (T3 ◦T4), . . . in parallel. Layer 2: Composeresults from Layer 1 into chunks of 4 steps, etc. After log L layers, the fullsequence is covered.

• Work Complexity: Each layer performs O(L) compositions. With log L layers,the total work is O(L log L).
Example for L = 4

1. Step 1: Compute local transformations:
T1, T2, T3, T4

2. Step 2: Compose adjacent pairs in parallel:
T1:2 = T1 ◦ T2, T3:4 = T3 ◦ T4

3. Step 3: Compose results to cover the full sequence:
T1:4 = T1:2 ◦ T3:4vector multiplications. Across all L states, this results in ∑Lt=1 t = L(L+1)2 = O(L2) operations.Please note for sequential recurrence, the complexity is O(L).Thus, the naive approach is quadratic in sequence length due to redundant computations.2Actually, we represent each step as a linear operator Tk that maps (hk−1, 1) to (hk , 1):

Tk = (A Bkxk0 1) , Tk (hk−11) = (hk1)
The "1" is a dummy dimension to handle the affine term.These operators compose associatively:

Ti ◦ Tj = (A Bixi0 1) ◦ (A Bjxj0 1) = (A2 ABixi + Bjxj0 1
)

DRAFT12.3. SELECTIVE STATE SPACE (S6) MODELS 176

4. Output: Extract all ht by combining partial results. To recover all ht (not justh4), we store intermediate results: h1 = T1h0, h2 = T1:2h0, h3 = T1:2 ◦ T3h0,and h4 = T1:4h0.Total operations: 4 (Step 1) + 2 (Layer 1) + 1 (Layer 2) = 7 compositions.
The parallel scan avoids O(L2) by reusing intermediate computations (like dynamicprogramming), exploiting associativity to hierarchically merge chunks, and leverag-ing parallelism with O(L log L) work instead of brute-force O(L2).Selective SSM blocks can be integrated as independent transformation units withina neural network, similar to how RNN cells such as LSTMs or GRUs are utilized. Thecomplete structure of a Mamba block extends beyond just the SSM module discussedearlier. It includes additional components such as linear projections, convolutions,and non-linear activation functions that work alongside the SSM block within thebroader Mamba architecture. The Mamba block is shown in Figure 12.1.

DRAFT12.3. SELECTIVE STATE SPACE (S6) MODELS 177

Figure 12.1: A Mamba block [47].
Transformers rely on attention mechanisms to model long-range dependencies, whereasMamba is based on structured state-space models (SSMs), making it more effi-cient for sequential tasks. Transformers have high computational complexity due tothe quadratic scaling of self-attention, whereas Mamba significantly reduces com-plexity by achieving linear scaling with sequence length. In terms of inferencespeed, Transformers require O(L) operations due to attention computations, whileMamba operates in constant time O(1), making it more efficient for long sequences.Training Transformers involves quadratic complexity O(L2), making them resource-intensive, whereas Mamba benefits from linear training complexity O(L log L), lead-

DRAFT12.4. IMPROVEMENTS BASED ON MAMBA 178

ing to faster convergence and reduced memory usage. While Transformers excel incapturing global dependencies through attention, Mamba leverages selective state-space modeling to process sequential information efficiently without explicit atten-tion mechanisms. Overall, Mamba presents a promising alternative to Transformers,particularly in scenarios where efficiency and scalability are critical, such as pro-cessing extremely long sequences. A comparison between Transformer and Mambablock is shown in Table 12.1.
12.3.1 Bidirectional Mamba modelsBidirectional Mamba (Bi-Mamba) extends the strengths of the Mamba architec-ture (efficiency, selectivity) to bidirectional contexts, making it a powerful tool fortasks requiring full-sequence understanding. While it sacrifices some autoregres-sive capabilities, it outperforms Transformers and RNNs in memory efficiency andlong-context modeling for non-autoregressive applications. The basic structure ofBi-Mamba has two blocks of Mamba: one block handles the past context and thesecond block handles the flipped input (i.e. future context). This is similar to Bi-directional RNNs discussed in Chapter 10.

y = Mamba(x) + flip(Mamba(flip(x))) (12.18)
Feature Transformer Mamba
Architecture Attention-based SSM-based
Complexity High Lower
Inference Speed O(L) O(1)
Training Speed O(L2) O(L log L)
Memory Usage O(L2) O(L)

Table 12.1: Comparison between Transformer and Mamba.
12.4 Improvements based on Mamba

The Jamba Block is a key architectural component of the Jamba model [48], anadvanced hybrid neural network that efficiently combines state-space models andattention mechanisms. The Jamba block is designed to leverage the long-range de-pendency modeling of SSMs while incorporating the context-awareness of attentionmechanisms. Unlike traditional Transformers, which suffer from quadratic complexityin sequence length, the Jamba block introduces a more efficient representation.Jamba blocks (see Figure 12.2) combine Mamba’s selective structured state spacemodels (SSMs) with Mixture-of-Experts (MoE) layers to enhance model capacity

DRAFT12.4. IMPROVEMENTS BASED ON MAMBA 179

and computational efficiency. The MoE layer Scales model capacity efficiently byrouting tokens to specialized experts and it consists of N experts {Ei}Ni=1 and atrainable gating network G . For an input token x ∈ Rd:The gating network computes weights for expert selection:
g(x) = TopK(Softmax(Wgx + bgτ

)) , (12.19)
where Wg ∈ RN×d, bg ∈ RN : Gating parameters, and τ : Temperature hyperparam-eter (often omitted, τ = 1). The TopK: Retains only the top k values (others set to0), followed by re-normalization.3Each expert Ei is a feed-forward network (FFN):

Ei(x) = W2,i · σ (W1,ix + b1,i) + b2,i, (12.20)
where σ : Activation function (e.g., GeLU, SiLU) and W1,i ∈ Rh×d,W2,i ∈ Rd×h:Expert parameters.The final output combines selected experts via gating weights:

y = N∑
i=1 gi(x) · Ei(x) (12.21)

The Jamba block integrates selective attention to enhance the capabilities of StateSpace Models (SSMs) by capturing dynamic token interactions efficiently. Insteadof applying full self-attention, it strategically incorporates attention only where nec-essary, reducing computational overhead while preserving expressivity. While SSMsexcel at handling long-range dependencies, attention refines both local and globalinteractions, improving sequence modeling. This hybrid approach enables Jamba tobalance structured memory processing with adaptive token relationships, ensuringboth scalability and strong performance in NLP and speech tasks. By leveraging at-tention in a controlled manner, Jamba maintains efficiency while outperforming pureSSM-based models like Mamba. Ultimately, attention in Jamba plays a crucial rolein optimizing information flow, making it a powerful alternative to traditional Trans-former architectures. Based on a sequence of 4 Jamba blocks, the Jamba languagemodel was successfully trained on context lengths of up to 1M tokens.
3The top k values (e.g., k = 2) experts process each token, limiting compute costs.

DRAFT12.4. IMPROVEMENTS BASED ON MAMBA 180

Figure 12.2: A single Jamba block [48].

DRAFT
181

DRAFT182

13. Probablistic Learning

Although initially introduced andstudied in the late 1960s and early1970s, statistical methods of Markovsource or hidden Markov modelinghave become increasingly popularin the last several years. There aretwo strong reasons why this hasoccurred. First the models are veryrich in mathematical structure andhence can form the theoretical basisfor use in a wide range ofapplications. Second the models,when applied properly, work verywell in practice for severalimportant applications.— Lawrence R. Rabiner
This chapter presents probabilistic learning methods. These approaches are widelyused due to their simplicity and effectiveness. They are computationally efficient,making both training and inference straightforward. One well-known example isHidden Markov Models (HMMs), which played a crucial role in speech recognitionfor decades. Before deep learning innovations, HMMs were the dominant methodin this field. They were eventually replaced by more advanced techniques likerecurrent neural networks (RNNs) and transformers. A key feature of probabilisticmodels is their reliance on strong mathematical assumptions. These assumptionsoften enable efficient derivations, reducing computational complexity. Additionally,they frequently lead to closed-form solutions, simplifying optimization. Despite theirlimitations, probabilistic learning remains valuable in many applications.

DRAFT13.1. NAÏVE BAYES MULTICLASS CLASSIFICATION 183

13.1 Naïve Bayes Multiclass Classification
The Naïve Bayes classifier is a probabilistic model based on Bayes’ theorem with thenaïve assumption that features are independent given the class label. Despite thisstrong assumption, it performs well in many applications, such as text classificationand spam detection. For discrete features, it is known as multinomial Naïve Bayesclassifier.Bayes’ theorem states that for two events A and B:

P(A|B) = P(B|A)P(A)P(B) (13.1)
In the context of Multiclass classification, let C be the class label (e.g., spam or notspam) and x = (x1, x2, ..., xd) be the feature vector.Then, the posterior probability of class Ck given the features is:

P(Ck |x) = P(x|Ck)P(Ck)P(x) (13.2)
Since P(x) is the same for all classes, we use the proportional form:

P(Ck |x) ∝ P(x|Ck)P(Ck) (13.3)The Naïve Bayes assumption simplifies the computation by assuming feature inde-pendence, meaning:
P(x|Ck) = d∏

i=1 P(xi|Ck) (13.4)
Thus, the posterior becomes:

P(Ck |x) ∝ P(Ck) d∏
i=1 P(xi|Ck) (13.5)

The classifier assigns x to the class with the highest posterior probability:
Ĉ = argmaxCk P(Ck) d∏

i=1 P(xi|Ck) (13.6)
For discrete features, such as text classification (word counts), we model word oc-currences using:

P(xi|Ck) = Ni,kNk , (13.7)

DRAFT13.1. NAÏVE BAYES MULTICLASS CLASSIFICATION 184

where Ni,k is the count of word xi in class Ck and Nk is the total count of words inclass Ck .To prevent zero probabilities when a word is missing from a class, we apply LaplaceSmoothing (Laplace Correction):
P(xi|Ck) = Ni,k + 1Nk + V , (13.8)

where V is the vocabulary size (total number of unique words).
Example: Assume we classify emails as spam (S) or not spam (¬S), based on words("free", "win").

Class "free" count "win" count Total wordsSpam (S) 4 3 10Not Spam (¬S) 2 1 8
Table 13.1: Word occurrences in spam and non-spam emails

Using Laplace smoothing (V = 3 since we consider three words: "free", "win", and anunseen word):
P("free"|S) = 4 + 110 + 3 = 513 (13.9)
P("win"|S) = 3 + 110 + 3 = 413 (13.10)

For non-spam:
P("free"|¬S) = 2 + 18 + 3 = 311 (13.11)
P("win"|¬S) = 1 + 18 + 3 = 211 (13.12)

Given P(S) = 0.6 and P(¬S) = 0.4, the posterior probabilities for a new emailcontaining "free win" are:
P(S|"free win") ∝ P(S)P("free"|S)P("win"|S) (13.13)

= 0.6× 513 × 413 (13.14)
P(¬S|"free win") ∝ P(¬S)P("free"|¬S)P("win"|¬S) (13.15)

= 0.4× 311 × 211 (13.16)

DRAFT13.2. GAUSSIAN MODELS 185

Computing these values, we choose the class with the highest probability.Naïve Bayes is simple and efficient, even with its strong independence assumption.It works well in many practical scenarios, especially text classification and spamfiltering.
13.2 Gaussian Models

Figure 13.1: 1D Gaussian density with variance =1.
The probability density function (PDF) of a 1-dimensional Gaussian distribution1(also known as the normal distribution) is given by (see Figure 13.1):

p(x) = 1√2πσ 2 exp(− (x − µ)22σ 2
) , (13.17)

where x is the continuous random variable, µ is the mean (center of the distribution),σ 2 is the variance (spread of the distribution), σ is the standard deviation (squareroot of variance), π is the mathematical constant approximately equal to 3.14159,exp(·) denotes the exponential function.The Gaussian function assigns higher probability density to values of x that arecloser to the mean and lower probability to values in the tails (far from µ). It issymmetric about the mean µ, meaning the left and right sides of the distribution aremirror images. The total area under the curve of p(x) is 1, which ensures that it isa valid probability distribution:
1The Gaussian distribution or model is also called the bell curve due to its characteristic shape,which is smooth and unimodal.

DRAFT13.2. GAUSSIAN MODELS 186

∫ ∞
−∞ p(x)dx = 1 (13.18)

The empirical rule explains the distribution of data in a normal distribution, indicat-ing that almost all values are within three standard deviations of the mean. Moreprecisely, around 68% of the data lies within one standard deviation, 95% falls withintwo standard deviations, and nearly 99.7% is encompassed within three standard de-viations from the mean. When the variance σ 2 increases, the curve widens (spreadsout), indicating more uncertainty or variation in the data. If the variance is small,the Gaussian curve is narrow and peaked, indicating that most values are close tothe mean.
13.2.1 Properties of a Gaussian modelThe Gaussian distribution has key properties, such as its normalized density func-tion, which can be calculated along with its mean and variance. To derive the meanand variance of a Gaussian random variable x with probability density function(PDF) (see Equation 13.17):The mean (expected value) of x is defined as:

E[x] = ∫ ∞−∞ xp(x)dx. (13.19)
Substitute the Gaussian PDF into this integral:

E[x] = 1σ√2π
∫ ∞
−∞ xe− (x−µ)22σ2 dx. (13.20)

Substitution: Let y = x − µ. Then x = y + µ, dx = dy, and the limits remain −∞to ∞:
E[x] = 1σ√2π

∫ ∞
−∞(y+ µ)e− y22σ2 dy. (13.21)

Split the integral into two terms:
E[x] = 1σ√2π

∫ ∞−∞ ye− y22σ2 dy︸ ︷︷ ︸Odd function: 0
+µ ∫ ∞−∞ e− y22σ2 dy

 , (13.22)
where the first integral is zero because ye− y22σ2 is an odd function and the secondintegral is the Gaussian integral:∫ ∞

−∞ e− y22σ2 dy = σ√2π. (13.23)

DRAFT13.2. GAUSSIAN MODELS 187

Thus:
E[x] = 1σ√2π · µ · σ√2π = µ. (13.24)

The variance is defined as:
Var(x) = E

[(x − µ)2] = E[x2]− (E[x])2. (13.25)
First, compute E[x2]:

E[x2] = 1σ√2π
∫ ∞
−∞ x2e− (x−µ)22σ2 dx. (13.26)

Substitution: Again, let y = x − µ, so x = y+ µ, dx = dy:
E[x2] = 1σ√2π

∫ ∞
−∞(y+ µ)2e− y22σ2 dy. (13.27)

Expand (y+ µ)2:
E[x2] = 1σ√2π

∫ ∞
−∞
(y2 + 2µy+ µ2) e− y22σ2 dy. (13.28)

Split into three integrals:
E[x2] = 1σ√2π

∫ ∞−∞ y2e− y22σ2 dy+ 2µ ∫ ∞−∞ ye− y22σ2 dy︸ ︷︷ ︸Odd function: 0
+µ2 ∫ ∞−∞ e− y22σ2 dy

 , (13.29)
where the second integral is zero (odd function), the third integral is µ2 · σ√2π , andfor the first integral, we use the known result for the second moment of Y ∼ N (0, σ 2):∫ ∞

−∞ y2e− y22σ2 dy = σ 3√2π. (13.30)
Substitute these results:

E[x2] = 1σ√2π [σ 3√2π + 0 + µ2σ√2π] = σ 2 + µ2. (13.31)
Finally, compute the variance:

Var(x) = E[x2]− (E[x])2 = (σ 2 + µ2)− µ2 = σ 2. (13.32)Hence, the parameter σ 2 in the Gaussian PDF is the variance of x .

DRAFT13.2. GAUSSIAN MODELS 188

13.2.2 Multivariate Gaussian models

Figure 13.2: Gaussian densities in 2D with different covariance types.
The probability density function (PDF) for a d-dimensional Gaussian distributionis2: p(x|µ,Σ) = 1(2π)d/2|Σ|1/2 exp(−12(x− µ)TΣ−1(x− µ)) , (13.33)
where x ∈ Rd is the random vector, µ ∈ Rd is the mean vector, Σ ∈ Rd×d is thecovariance matrix (symmetric positive definite), |Σ| is the determinant of Σ, and Σ−1is the inverse of Σ.The type of covariance matrix determines the shape of the contour plot for a Gaussiandensity. A spherical Gaussian has equal variances in all directions, with off-diagonalelements set to zero, resulting in circular contour plots. In contrast, a diagonalcovariance matrix allows different variances along each axis while maintaining zerooff-diagonal elements, leading to elliptical contours aligned with the coordinate axes.A full covariance matrix, however, includes nonzero off-diagonal elements, indicatingcorrelations between dimensions, which causes the elliptical contours to be rotated.Figure 13.2 illustrates the contour plots for these three covariance structures.From a linear algebra perspective, eigenvalues and eigenvectors of a Gaussian’scovariance matrix describe its shape and orientation. Given a covariance matrix Σ,the eigen-decomposition is:

Σ = QΛQT , (13.34)where Q contains the eigenvectors as columns and Λ is a diagonal matrix witheigenvalues λ1, λ2, . . . , λd on the diagonal. The eigenvectors determine the principalaxes (directions) of the Gaussian’s elliptical contours. The eigenvalues define thevariance along those directions. In 2D, the contours of the Gaussian are ellipses,and the lengths of the semi-axes are proportional to √λ1 and √λ2. As shown in
2The Gaussian density can serve as an activation function when applied to an input vector.

DRAFT13.2. GAUSSIAN MODELS 189

Figure 13.3, these values control how stretched or compressed the Gaussian is ineach principal direction.

Figure 13.3: Relation between Covariance matrix and eigenvectors and eigenvalues.
By definition, the mean µ is the expected value of x:

µ = E[x] = ∫
Rd x · p(x|µ,Σ)dx, (13.35)

and the covariance matrix Σ is defined as:
Σ = E

[(x− µ)(x− µ)T] = ∫
Rd (x− µ)(x− µ)T · p(x|µ,Σ)dx. (13.36)

The covariance matrix Σ can alternatively be expressed as:
Σ = E[xxT]− E[x]E[x]T (13.37)

DRAFT13.2. GAUSSIAN MODELS 190

which simplifies to:
Σ = E[xxT]− µµT (13.38)

13.2.3 Learning ProblemMaximum Likelihood Estimation (MLE) is a method used to determine the parame-ters of a Gaussian distribution that best fit the data. It finds the values of the meanand covariance that maximize the likelihood of observing the given dataset. Givena dataset of N i.i.d.3 samples {x1, x2, ..., xN}, we estimate the parameters µ and Σusing Maximum Likelihood Estimation (MLE).The likelihood function for N independent samples is:
L(µ,Σ) = N∏

i=1 p(xi) (13.39)
Taking the log-likelihood:

L(µ,Σ) = N∑
i=1 logp(xi|µ,Σ). (13.40)

Substituting the Gaussian PDF:
L(µ,Σ) = −Nd2 log(2π)− N2 log |Σ| − 12 N∑

i=1 (xi − µ)TΣ−1(xi − µ). (13.41)
Maximizing with Respect to µ and using the matrix identity4:∂xTAx∂x = 2Ax. (13.42)
Take the derivative of L(µ,Σ) with respect to µ:

∂L(µ,Σ)∂µ = Σ−1 N∑
i=1 (xi − µ), (13.43)

and set the derivative to zero:N∑
i=1 (xi − µ) = 0 =⇒ µMLE = 1N N∑

i=1 xi. (13.44)
3i.i.d. stands for independent and identically distributed where each sample doesn’t affect or dependon the others and all variables follow the same probability distribution. This assumption breaks downwhen dealing with sequential data, where each observation often depends on the ones before it.4The Matrix Cookbook: https://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf.

DRAFT13.2. GAUSSIAN MODELS 191

Maximizing with Respect to Σ: Let the scatter matrix S = ∑Ni=1(xi−µMLE)(xi−µMLE)Tand using the matrix calculus identities:∂ log |Σ|∂Σ = Σ−1, (13.45)
where |Σ| is the determinant of Σ. Given the cyclic property of Trace: For matrices
A,B,C, we have tr(ABC) = tr(CAB) (if dimensions match). Applying this:

tr ((xi − µ)TΣ−1(xi − µ)) = tr (Σ−1(xi − µ)(xi − µ)T) , (13.46)
and the trace of a sum is the sum of traces (i.e. linearity of Trace), so:

N∑
i=1 tr (Σ−1(xi − µ)(xi − µ)T) = tr(Σ−1 N∑

i=1 (xi − µ)(xi − µ)T) . (13.47)
Therefore, ∂∂Σ (tr(Σ−1S)) = −Σ−1SΣ−1. (13.48)Combining the Identities: The log-likelihood L(µ,Σ) for a multivariate Gaussian (upto constants) is: L(µ,Σ) = −N2 log |Σ| − 12tr (Σ−1S) . (13.49)Taking the derivative with respect to Σ and applying the identities:∂L(µ,Σ)∂Σ = −N2 Σ−1 + 12Σ−1SΣ−1 = 0. (13.50)
Solving for Σ: multiply through by 2Σ (from the left and right) to eliminate theinverses: −NΣ + S = 0 =⇒ Σ = 1NS. (13.51)This gives the maximum likelihood estimate (MLE) for the covariance matrix:

ΣMLE = 1NS = 1N N∑
i=1 (xi − µMLE)(xi − µMLE)T . (13.52)

The MLE covariance ΣMLE is biased (divided by N) and consistent (converges to thetrue parameter as N →∞).5 An unbiased estimator uses N − 1 instead of N .6
5A biased estimator in statistics is one whose expected value (mean) does not equal the trueparameter it is estimating. Mathematically, let θ̂ be an estimator of a parameter θ. The bias of θ̂is defined as Bias(θ̂) = E[θ̂] − θ where the estimator θ̂ is biased if E[θ̂] ̸= θ else if E[θ̂] = θ, theestimator is unbiased.6The Bessel correction is the use of (n− 1) instead of n in the denominator of the sample variance

DRAFT13.2. GAUSSIAN MODELS 192

13.2.4 Gaussian Naïve Bayes ClassifierFor continuous features, we assume that each feature follows a normal distribution:
formula to make it an unbiased estimator of the population variance. Let x1, x2, . . . , xn be independentand identically distributed (i.i.d.) 1D random variables with the true mean: µ = E[xi] and true variance:σ 2 = Var(xi). To estimate the biased sample variance σ̂ 2biased from the data, Since expectation is linear:

E[x̄] = E

[1n n∑
i=1 xi

] = 1n n∑
i=1 E[xi] = 1n · nµ = µ.

So, x̄ is an unbiased estimator of µ. By expanding the squared differences (xi−x̄)2 = (xi−µ+µ−x̄)2 =(xi − µ)2 + (µ − x̄)2 + 2(xi − µ)(µ − x̄), the biased sample variance:
E[σ̂ 2biased] = 1n n∑

i=1 E[(xi − x̄)2].
Substituting the expansion:

E[(xi − x̄)2] = E[(xi − µ)2] + E[(µ − x̄)2] + 2E[(xi − µ)(µ − x̄)].Calculating each term: E[(xi−µ)2] = σ 2 (population variance) and E[(µ−x̄)2] = Var(x̄) = Var (1n∑ xi) =1n2 ∑Var(xi) = σ2n (variance of the sample mean). For the cross-term:
E[(xi − µ)(µ − x̄)] = E

(xi − µ)
µ − 1n n∑

j=1 xj
 = E

[− (xi − µ)2n
] = −σ 2n ,

because E[(xi − µ)(xj − µ)] = 0 for i ̸= j (independent samples).Substituting these into the expression:
E[(xi − x̄)2] = σ 2 + σ 2n + 2(−σ 2n

) = σ 2 − σ 2n .Thus, the expected value of the biased estimator is:
E[σ̂ 2biased] = 1n n∑

i=1
(σ 2 − σ 2n

) = 1n · n
(σ 2 − σ 2n

) = σ 2 − σ 2n = n − 1n σ 2.
The expected value of the biased sample variance estimator is:

E[σ̂ 2biased] = n − 1n σ 2.
This shows that the biased estimator underestimates the true population variance σ 2 by a factor ofn−1n . To correct this bias, we use Bessel’s correction, multiplying by nn−1 to obtain the unbiased samplevariance estimator: σ̂ 2unbiased = 1n − 1 n∑

i=1 (xi − x̄)2.

DRAFT13.3. GAUSSIAN MIXTURE MODELS 193

P(xi|Ck) = 1√2πσ 2k,i exp(− (xi − µk,i)22σ 2k,i
) (13.53)

where µk,i and σ 2k,i are the sample mean and variance of feature xi for class Ck .By applying Bayes’ rule as indicated in Equation 13.6, we select the class that hasthe highest probability. The process of generative estimation for Gaussian densities(models) is highly efficient and can be completed in a single pass through thetraining data. We partition the training data according to their respective classesand independently calculate the mean and variance or covariance for each class. It’simportant to note that generative training does not differentiate between classes. Asa result, it does not make optimal use of the parameters compared to discriminativetraining. Thus, while generative training is effective, it may lack the efficiency of itsdiscriminative counterpart.
13.3 Gaussian Mixture Models

Figure 13.4: 1D Gaussian Mixture Model with 3 Components (Multimodal Density).
The Gaussian Mixture Model (GMM) is a powerful extension of the single Gaussiandensity function, allowing us to model more complex, multimodal data distributions.While a single Gaussian assumes the data is generated from one symmetric, bell-shaped distribution centered around a mean, real-world data often exhibits multipleclusters or modes. GMM addresses this limitation by combining several Gaussiancomponents, each capturing different subpopulations or structures in the data. Thismakes GMM especially useful in tasks like clustering, density estimation, and un-supervised learning, where the assumption of a single Gaussian is too restrictive.

DRAFT13.3. GAUSSIAN MIXTURE MODELS 194

Moreover, GMM can approximate any continuous distribution given enough compo-nents, making it a flexible and expressive model. By estimating each component’smean, covariance, and mixing weight, GMM provides a probabilistic framework thatcaptures uncertainty and overlapping clusters in data. A GMM represents a prob-ability distribution as a weighted sum of K Gaussian components:
p(x|Θ) = K∑

k=1 ckN (x|µk ,Σk), (13.54)
where ck is the mixing coefficient (weight) of the k-th component (∑Kk=1 ck = 1),
µk is the mean vector of the k-th component, Σk is the covariance matrix of thek-th component, Θ = {ck , µk ,Σk}Kk=1 represents all parameters, and N (x|µ,Σ) isthe multivariate Gaussian density.As illustrated in Figure 13.4, the Gaussian Mixture Model (GMM) can represent anyarbitrary multimodal probability distribution.

Figure 13.5: 1D Gaussian Mixture Model with 3 Components (Multimodal Density).
Figure 13.5 demonstrates how using a single Gaussian to approximate complex,multimodal data results in an inaccurate density estimation and leads to incorrectmodeling assumptions.
13.3.1 Learning ProblemThe Expectation-Maximization (EM) algorithm is a powerful iterative method forfinding maximum likelihood estimates in probabilistic models with latent variables.For Gaussian Mixture Models (GMMs), EM provides an efficient way to learn theparameters of the mixture components.

DRAFT13.3. GAUSSIAN MIXTURE MODELS 195

Given data X = {x1, . . . , xN}, and a probabilistic model with latent variables Z ={z1, . . . , zN}, we want to maximize:
logp(X;θ) = N∑

n=1 log∑
zn
p(xn, zn | θ) (13.55)

This is hard because of the log-sum over latent variables zn ∈ {1, . . . , K}. Weintroduce a variational distribution q(zn) and apply Jensen’s inequality7 to the log-sum [49, 50, 51]:
log∑zn p(xn, zn | θ) = log∑zn q(zn)p(xn, zn | θ)q(zn) ≥∑zn q(zn) log p(xn, zn | θ)q(zn) (13.56)

This gives a lower bound L(q, θ):
L(q, θ) =∑zn q(zn) log p(xn, zn | θ)q(zn) (13.57)

This is the Evidence Lower Bound (ELBO):
logp(xn | θ) ≥ Eq(zn) [logp(xn, zn | θ)] + H(q(zn)) (13.58)Where H(q(zn)) is the entropy of q(zn). We now alternate:

E-Step (Optimize q): Set q(zn) = p(zn | xn;θold), i.e., the posterior over latentvariables using old parameters.
q(zn = k) = γ(znk) = ckN (xn|µk ,Σk)∑Kj=1 cjN (xn|µj ,Σj) (13.59)

This is the responsibility of component k for point xn.
M-Step (Optimize θ): Maximize the ELBO w.r.t. θ = {ck , µk ,Σk}, using the fixedq(zn) = γnk :We maximize the expected complete-data log-likelihood. The joint probability ofobservations X and latent variables Z factorizes as:

p(X,Z) = N∏
n=1p(xn, zn) = N∏

n=1p(zn)p(xn | zn), (13.60)
where p(zn = k) = ck is the prior probability of cluster k (mixing coefficient), andp(xn | zn = k) = N (xn | µk ,Σk) is the Gaussian likelihood.

7Jensen’s Inequality (general form) for a concave function (like the logarithm) and a random variable
x is f (E[x]) ≥ E[f (x)] where equality holds if x is deterministic (no randomness).

DRAFT13.3. GAUSSIAN MIXTURE MODELS 196

Thus:
Eq(z) [logp(X,Z)] = N∑

n=1
K∑
k=1 γnk log [ck N (xn | µk ,Σk)] , (13.61)

where: γnk = p(zn = k | xn) = responsibilityThis splits into 3 terms. We optimize each one w.r.t. ck , µk ,Σk in the M-step.
1. Mixing Coefficients ckWe want to maximize:

Lc = N∑
n=1

K∑
k=1 γnk log ck subject to K∑

k=1 ck = 1
Use Lagrange multipliers:

L = N∑
n=1

K∑
k=1 γnk log ck + λ(1− K∑

k=1 ck
)

Take derivative w.r.t. ck :
∂L∂ck = N∑

n=1
γnkck − λ = 0⇒ ck = 1λ N∑

n=1 γnkNormalize:
K∑
k=1 ck = 1⇒ λ = N ⇒ ck = 1N N∑

n=1 γnkUpdate:
ck = 1N N∑

n=1 γnk
2. Means µkWe optimize:

DRAFT13.3. GAUSSIAN MIXTURE MODELS 197

Lµ = N∑
n=1 γnk logN (xn | µk ,Σk)

Focus on the log of the Gaussian (ignoring constants):
logN (xn | µk ,Σk) = −12(xn − µk)TΣ−1k (xn − µk)

Take derivative w.r.t. µk :
∂Lµ∂µk = N∑

n=1 γnkΣ−1k (xn − µk) = 0
Solve:

N∑
n=1 γnkxn = µk N∑

n=1 γnk ⇒ µk = ∑Nn=1 γnkxn∑Nn=1 γnkUpdate:
µk = ∑Nn=1 γnkxn∑Nn=1 γnk

3. Covariance Matrices ΣkMaximize:
LΣ = N∑

n=1 γnk logN (xn | µk ,Σk)
Log Gaussian includes:

logN = −12 log |Σk | − 12(xn − µk)TΣ−1k (xn − µk)
Take derivative w.r.t. Σk and set to zero:

Σk = ∑Nn=1 γnk (xn − µk)(xn − µk)T∑Nn=1 γnk

DRAFT13.3. GAUSSIAN MIXTURE MODELS 198

Update:
Σk = ∑Nn=1 γnk (xn − µk)(xn − µk)T∑Nn=1 γnk

4. Compute the log-likelihood:
logp(X|Θ) = N∑

n=1 log(K∑
k=1 ckN (xn|µk ,Σk))

Stop if the change in log-likelihood is below a threshold ε or after a maximumnumber of iterations.
The EM Algorithm Pseudocode for GMM:
Algorithm 13.1 EM Algorithm for GMM1: Initialize Θ(0) = {c(0)k , µ(0)k ,Σ(0)k }Kk=1, using either random values or a clusteringalgorithm like K-means (see Section 13.3.3).2: t ← 03: repeat4: E-Step:5: for n = 1 to N do6: for k = 1 to K do7: Compute γ(znk) = ckN (xn|µk ,Σk)∑Kj=1 cjN (xn|µj ,Σj) using current parameters Θ(t)

8: end for9: end for10: M-Step:11: for k = 1 to K do12: Compute Nk = ∑Nn=1 γ(znk)13: Update c(t+1)k = Nk /N14: Update µ(t+1)k = 1Nk ∑Nn=1 γ(znk)xn15: Update Σ(t+1)k = 1Nk ∑Nn=1 γ(znk)(xn − µ(t+1)k)(xn − µ(t+1)k)T16: end for17: t ← t + 118: Compute logp(X|Θ(t)) = ∑Nn=1 log (∑Kk=1 ckN (xn|µk ,Σk))19: until convergence (| logp(X|Θ(t))− logp(X|Θ(t−1))| < ε or t > tmax)

DRAFT13.3. GAUSSIAN MIXTURE MODELS 199

13.3.2 Gaussian Mixture Naïve Bayes ClassifierA more accurate Naive Bayes classifier for continuous features can be implementedby modeling each class as a Gaussian Mixture Model (GMM), which captures multi-modal distributions better than a single Gaussian. By representing each classwith a mixture of Gaussians, the classifier improves flexibility while maintainingthe Naive Bayes assumption of feature independence. This approach allows formore precise probability density estimation, enhancing classification performanceon complex datasets. The parameters of the GMM for each class can be efficientlylearned using the Expectation-Maximization (EM) algorithm.The Naïve Bayes assumption enforces that features are conditionally independentgiven the class and mixture component. Thus, the covariance matrix Σk,m is diagonal:
Σk,m = diag(σ2k,m,1, σ2k,m,2, . . . , σ2k,m,d) (13.62)So, the class-conditional density simplifies to:

p(x|C = k) = Mk∑
m=1 ck,m

d∏
j=1N (xj |µk,m,j , σ2k,m,j) (13.63)

Using Bayes’ theorem, the posterior probability of class k given x is:
P(C = k|x) = p(x|C = k)P(C = k)p(x) (13.64)

where the marginal likelihood p(x) is:
p(x) = K∑

k=1 p(x|C = k)P(C = k) (13.65)
The predicted class Ĉ is the one that maximizes the posterior probability:

Ĉ = argmaxk P(C = k|x) = argmaxk p(x|C = k)P(C = k) (13.66)
13.3.3 Connection with K-meansK-Means is an iterative clustering algorithm that partitions data into K distinctclusters by minimizing the within-cluster variance.8 The objective function (Inertia):

J = N∑
i=1

K∑
k=1 rik ||xi − µk ||2 (13.67)

8The K-Means standard algorithm was first proposed by Stuart Lloyd.

DRAFT13.3. GAUSSIAN MIXTURE MODELS 200

where xi ∈ Rd is a data point, µk is the centroid of cluster k . The rik ∈ {0, 1} is anindicator: rik = {1 if xi is assigned to cluster k,0 otherwise. (13.68)
The Lloyd’s algorithm is usedAlgorithm Steps:

1. Initialize K centroids randomly.2. Assignment Step: Assign each point to the nearest centroid:
rik = {1 if k = argminj ||xi − µj ||2,0 otherwise.

3. Update Step: Recompute centroids as the mean of assigned points:
µk = ∑Ni=1 rikxi∑Ni=1 rik

4. Repeat until convergence (centroids stabilize).
The K-Means algorithm can be viewed as a constrained version of Gaussian Mix-ture Models (GMM) with specific simplifying assumptions. While GMM employsprobabilistic soft assignments rik = ckN (xi|µk ,Σk)∑j cjN (xi|µj ,Σj) , K-Means uses deterministic hardassignments (rik ∈ {0, 1}) where each point belongs exclusively to one cluster. Fur-thermore, GMM typically allows for general covariance matrices, whereas K-Meanseffectively operates with isotropic, spherical clusters of equal variance. Another keydifference lies in cluster weighting: GMM learns individual weights for each com-ponent, while K-Means treats all clusters as equally important. These restrictionsmake K-Means a special case that emerges when GMM is constrained to uniformweights ck = 1/K , hard assignments, and spherical covariances with vanishing vari-ance. The key distinctions between K-Means and GMM are concisely presented inTable 13.2. This comparison highlights their fundamental differences in assignmentmethods, covariance structures, and cluster weighting approaches.
13.3.4 Connection with Deep Neural NetworksTo connect the Gaussian Mixture Model (GMM) with deep neural networks, we re-formulate it in exponential form, which simplifies interpretation and integration. Thisrepresentation expresses the GMM’s components using linear and quadratic terms,making the model’s structure more transparent. By aligning the GMM with the ex-ponential family, we enable seamless compatibility with neural network frameworks.

DRAFT13.3. GAUSSIAN MIXTURE MODELS 201

Table 13.2: Comparison of K-Means and GMM.
Aspect K-Means GMM
Assignments Hard (rik ∈ {0, 1}) Soft (posterior probabilities)
Covariance Implicitly σ 2I General Σk
Cluster Shape Spherical Elliptical
Optimization Lloyd’s algorithm Expectation-Maximization (EM)

Assuming diagonal covariance matrices, Σk = diag(Σ2k1, . . . ,Σ2kd), the component kof the Gaussian Mixture Model (GMM) can be expressed in the following form:
N (x|µk ,Σk) = 1(2π)d/2|Σk |1/2 exp(−12(x− µk)TΣ−1k (x− µk)) (13.69)

Expanding the quadratic term:
= exp(d∑

i=1
(

µki
Σ2ki xi − 12Σ2ki x2i

)− 12 d∑
i=1
(

µ2ki
Σ2ki + log(2πΣ2ki))) . (13.70)

Then, we express each Gaussian component in exponential form:
N (x|µk ,Σk) = exp (wTk T (x)− A(wk)) , (13.71)

where wk = exponential parameters for component k , T (x) = [1, x1, . . . , xd, x21 , . . . , x2d]T(sufficient statistics), A(wk) = log-partition function for component k .Now, match to exp(wTk T (x)− A(wk)):
wTk T (x) = wk0 · 1 + d∑

i=1 wkixi +
d∑
i=1 wk (d+i)x2i (13.72)

Hence, the wk parameters for each component
1. Bias term (1):

wk0 = −12 d∑
i=1
(µ2kiΣ2ki + log(2πΣ2ki))

2. Linear terms (xi): wki = µkiΣ2ki , i = 1, . . . , d
3. Quadratic terms (x2i):

wk (d+i) = − 12Σ2ki , i = 1, . . . , d

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 202

4. Log-partition function: A(wk) = −wk0
The GMM can be written:

p(x) = K∑
k=1 exp (wTk T (x)− A(wk) + log ck) . (13.73)

It is possible to recover the original parameters from wk ror each component k :
µki = − wki2wk (d+i) , Σ2ki = − 12wk (d+i) , i = 1, . . . , d

The mixture weights ck remain unchanged (they are not part of wk).In the context of multiclass classification, the predicted class Ĉ is the one thatmaximizes the posterior probability:
Ĉ = argmaxi P(C = i|x) = argmaxk p(x|C = i)P(C = i)= argmaxi log(p(x|C = i)) + log(P(C = i))

= argmaxi log(K∑k=1 exp (wTikT (x)− A(wik) + log cik)) + bi,
(13.74)

where the i is the class index and bi = log(P(C = i)) may be considered as a biasterm for each class.Following Equation 13.74, we visualize the Gaussian Mixture Naïve Bayes Classifierwith its single hidden layer structure in Figure 13.6. This contrasts fundamentallywith deep neural networks (see Chapter 8), which utilize multiple hidden layers toenable hierarchical feature extraction. While The GMM classifier offers computa-tional efficiency through its shallow architecture, DNNs achieve greater modelingflexibility by composing learned representations across layers. The depth advan-tage allows DNNs to capture complex nonlinear patterns that often yield superioraccuracy, albeit requiring more training data and computational resources. Thistrade-off positions our single-layer probabilistic model as an interpretable baselineagainst deeper, more expressive alternatives.
13.4 Sequential Modeling using Hidden Markov Models
Historically, speech recognition systems have frequently utilized Hidden MarkovModels (HMMs) to process input speech signals, which are structured as sequencesof frames, as outlined in Chapter 3. HMMs are well-suited for modeling the tempo-ral structure of speech data. Their flexibility makes them essential for translating

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 203

Figure 13.6: The Gaussian Mixture Naïve Bayes Classifier operates in a comparableway to a neural network architecture. The architecture features a single hiddenlayer with exponential activations, where each class’s log prior probability servesas the bias component. Unlike standard neural networks with d-dimensional inputs,our feature vector incorporates both raw features and their squared terms, resultingin twice the dimensionality (2d).
spoken input into text. This section provides a summary of HMMs, emphasizing theirrole in speech recognition. Gaining insight into how they operate in this settinghelps us recognize their value in handling audio signals. Therefore, we examineHMMs through the lens of speech recognition to demonstrate their real-world use-fulness.Automatic speech recognition systems, also known as speech-to-text systems, arethe core technology for man-machine interface. These systems aim to find the mostlikely word sequence given acoustic observations collected from a speech signal.Using statistical methods [52], speech recognition can be defined as a problem ofchoosing a word sequence Ŵ with the maximum a posterior (MAP) criterion given atime sequence of speech frames T or acoustic observations associated an utterance
X = (x1, x2, . . . , xT) ∈ RTxD where D is the dimensionality of the acoustic vector:

Ŵ = argmax
W
P(W|X) (13.75)

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 204

Using Bayes’s rule, Equation 13.75 can be written as
P(W|X) = p(X|W)P(W)p(X)∝ p(X|W)P(W) (13.76)

where p(X|W) is the likelihood of the acoustic observations given by an acousticmodel and P(W) is the likelihood of the hypothesized word sequence given by alanguage model (see Chapter 11).A Hidden Markov Model is a stochastic finite state machine [5]. An example ofan HMM with left-to-right transition topology, which is used to model a phonein an acoustic model, is shown in figure 13.7. This model has one entry state,three emitting states, and one exit state. The left-to-right topology imposes priorinformation, where speech production is sequential in time.

o
1

o
4

o
2

o
3

o
T

51 2 3 4
a

12 a 23 a
34 a 45

a
22

a
33

a
44

b
2
() b

3
() b

4
()

Figure 13.7: A typical Hidden Markov Model for a phone.
For every observation at time t , a jump from the current state i to some new statej is allowed with a transition probability:

aij = P(st+1 = j|st = i) (13.77)
where ∑Nj aij = 1, N is the number of states in the HMM model. An acoustic featurevector xt may be generated, with an output probability density function bj (xt), whichis associated with state j . A mixture of Gaussian distributions is typically used tomodel the output distribution for each state,

bj (xt) = M∑
m=1 cjmN (xt ; µjm,Σjm) (13.78)

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 205

where M is the number of mixture components, cjm is the component weight and∑Mm cjm = 1. µjm and Σjm are the component specific mean vector and covariancematrix respectively. If the acoustic features are statistically independent, then diag-onal covariance matrices are used to compute the likelihood of a Gaussian model,
N (xt ; µjm,Σjm) = D∏

d=1
1√(2c)σjmd exp− (xtd − µjmd)22σ 2jmd (13.79)

where σjmd is the variance element of the Gaussian component m for dimension d.An HMM can be written in terms of a set of parameters Λ,
Λ = {aij , cjm, µjm,Σjm} (13.80)

HMM model estimation is based on two assumptions that lead to a tractable infer-ence when computing the likelihood p(X|M) of the observation sequence, X, given amodel M. Although the HMM is successful as an acoustic model because of theseassumptions, they are also its main limitations. The first assumption is the Markovassumption, which approximates, or factorizes, the probability of the hidden statesequence S = s1, s2, . . . , sT given a model M by a first order Markov chain:
P(S|M) = T∏

t=1P(st |st−1) = T∏
t=1 astst−1 (13.81)

The second assumption is the conditional independence assumption, where the prob-ability of an observation sequence, X, given a state sequence, S and a model M isgiven by
p(X|S,M) = T∏

t=1 p(xt |st) = T∏
t=1 bst (xt), (13.82)

Since the state sequence is hidden, the total probability or likelihood of the acousticobservations p(X|M) is expressed as a sum over all possible state sequences:
p(X|M) =∑

S
p(X|S,M)P(S|M), (13.83)

which can be efficiently computed using a dynamic programming algorithm giventhe factorizations in Equation 13.81 and Equation 13.82. The summation over allpossible state sequences in Equation 13.83 can be approximated by a maximumoperation to find the best state sequence Ŝ:
Ŝ = argmax

S
p(X|S,M)P(S|M) (13.84)

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 206

which is known as the Viterbi path. This gives the best alignment of acousticobservations with the states of an HMM. The Viterbi algorithm (i.e. Algorithm 13.2)isa dynamic programming approach used to find the most likely sequence of hiddenstates Ŝ in a Hidden Markov Model (HMM) given an observation sequence X andmodel parameters M.
Algorithm 13.2 Viterbi Algorithm for Left-to-Right HMM
Require: Observation sequence X = (x1, . . . , xT)
Require: HMM M = (A,B with:- Non-emitting start state s0- Non-emitting end state sN+1- Left-to-right transitions (aij = 0 for j < i)
Ensure: Most likely state sequence Ŝ = (s∗1, . . . , s∗T)1: Initialization:2: for all emitting states i do3: δ1(i)← ·bi(x1)4: ψ1(i)← s05: end for6: Forward Pass:7: for t ← 2 to T do8: for all emitting states j do9: δt(j)← maxi[δt−1(i) · aij] · bj (xt)10: ψt(j)← argmaxi[δt−1(i) · aij]11: end for12: end for13: Termination:14: P∗ ← maxj [δT (j) · aj,sN+1]15: s∗T ← argmaxj [δT (j) · aj,sN+1]16: Backtracking:17: Ŝ← [s∗T]18: for t ← T − 1 downto 1 do19: s∗ ← ψt+1(Ŝ[0])20: Ŝ← [s∗] + Ŝ21: end for22: return Ŝ

13.4.1 Generative Parameter EstimationParameters of HMMs can be estimated using the maximum likelihood estimate(MLE) framework. For R training observations {X1,X2, . . . ,Xr , . . . ,XR} with cor-

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 207

responding transcriptions {wr}, the MLE objective function is given by
FMLE(Λ) = R∑

r=1 logpΛ(Xr |Mwr) (13.85)
where Mwr is the composite model corresponding to the reference word sequencewr .The parameters can be estimated using iterative Baum-Welch algorithm, also knownas the forward-backward algorithm [19]. The Baum-Welch algorithm is a specialcase of the Expectation-Maximization (EM) algorithm, which is an efficient iterativeprocedure to perform MLE in the presence of hidden variables [53]. The inferenceof an HMM is based on computing the forward and backward probabilities. Theforward probabilities (see Algorithm 13.3) can be computed recursively:

αj (t) = p(x1, . . . , xt , st = j|M) = (N−1∑
i=2 αi(t − 1)aij)bj (xt) (13.86)

with initial conditions α1(1) = 1 and αj (1) = a1jbj (x1) for 1 < j < N and a finalcondition αN (T) = ∑N−1i=2 αi(T)aiN .

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 208

Algorithm 13.3 Forward Algorithm for HMM Probability Computation
Require: Observation sequence X = (x1, . . . , xT)
Require: HMM M = (A,B) with:- Non-emitting start state s1- Non-emitting end state sN- N total states (including non-emitting states)
Ensure: Total observation probability P(X|M)1: Initialization:2: α1(1)← 1 ▷ Start state probability3: for j ← 2 to N − 1 do ▷ Emitting states4: αj (1)← a1j · bj (x1)5: end for6: Recursive Computation:7: for t ← 2 to T do8: for j ← 2 to N − 1 do ▷ For each emitting state9: αj (t)← (∑N−1i=2 αi(t − 1) · aij) · bj (xt)10: end for11: end for12: Termination:13: αN (T)←∑N−1i=2 αi(T) · aiN ▷ End state probability14: p(X|M)← αN (T) ▷ Total observation probability15: return p(X|M)
Similarly, the backward probabilities can be computed see Algorithm 13.4:

βj (t) = p(xt+1, . . . , xT |st = j,M) = N−1∑
i=2 ajibj (xt+1)βi(t + 1) (13.87)

with initial conditions βi(T) = aiN for 1 < i < N and a final condition β1(1) =∑N−1j=2 a1jbj (x1)βj (1).

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 209

Algorithm 13.4 Backward Algorithm for HMM
Require: Observation sequence X = (x1, . . . , xT)
Require: HMM M = (A,B,π) with:- Non-emitting start state s1- Non-emitting end state sN- N total states (including non-emitting states)
Ensure: Backward probabilities βj (t) for all states and times1: Initialization:2: for i ← 2 to N − 1 do ▷ Emitting states3: βi(T)← aiN ▷ Transition to end state4: end for5: β1(T)← 1 ▷ Start state at time T6: βN (T)← 1 ▷ End state at time T7: Recursive Computation:8: for t ← T − 1 downto 1 do9: for j ← 1 to N do ▷ All states10: βj (t)←∑N−1i=2 aji · bi(xt+1) · βi(t + 1)11: end for12: end for13: Final Computation:14: β1(1)←∑N−1j=2 a1j · bj (o1) · βj (1)15: return β ▷ All backward probabilities
To describe transitions between state i at time t and state j at time t+1, we define:

ξij (t) = P(st = i, st+1 = j | X;M) = αi(t) · aij · bj (xt+1) · βj (t + 1)P(X | M) , (13.88)
where aij is the transition probability from state i to j and bj (xt+1) is the observationlikelihood in state j at time t + 1. The transition matrix A = [aij] is updated byestimating the expected number of transitions from state i to j over the expectednumber of transitions from state i to any state:

âij = ∑T−1t=1 ξij (t)∑T−1t=1 γi(t) (13.89)
In addition, the frame-state alignment probability γj , denoting the probability ofbeing in state j at some time t can be written in terms of the forward probabilityαj (t) and the backward probability βj (t):

γj (t) = P(st = j|X;M) = p(X, st = j|M)p(X|M) = αj (t)βj (t)p(X|M) (13.90)

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 210

where p(X|M) = αN (T) = β1(1) (13.91)and a component specific alignment probability can be derived:
γjm(t) = P(st = j,mt = m|X;M) = γj (t)cjmbjm(xt)bj (xt) (13.92)

where the mth component is associated with the j th state.Consequently, the accumulators of the sufficient statistics Cjm(1) = γjm, Cjm(X), andCjm(X2) are calculated as follows:
Cjm(1) = R∑

r=1
Tr∑
t=1 γrjm(t) (13.93)

Cjm(X) = R∑
r=1

Tr∑
t=1 γrjm(t)xt (13.94)

Cjm(X2) = R∑
r=1

Tr∑
t=1 γrjm(t)x2t (13.95)

Hence, the Baum-Welch re-estimation formulae for the mean and covariance of statej and component m of an HMM are given by
cjm = Cjm(1)∑m Cjm(1) (13.96)
µjm = Cjm(X)Cjm(1) (13.97)
Σjm = Cjm(X2)Cjm(1) − µ2jm (13.98)

The transition probabilities between states are also estimated by calculating theforward and backward probabilities.Generative training of HMM models leads to models that may be useful for gener-ating speech, which is useful for speech synthesis. Using Bayes rule as in Equa-tion 13.75, these generative models can be used for speech recognition. AlthoughHMM models should be trained to discriminate between speech classes, it is notuncommon that generative training is the basic training method in speech recogni-tion. This is related to the basic fact that generative training of HMM models is fastand efficient because:• The Maximization step of the EM algorithm for Gaussian models inherits theclosed form of Gaussian’s mean and variance estimation from the data. This

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 211

attractive property may be the main reason behind the widespread of HMMmodels.
• Maximum likelihood generative training accumulates statistics from the correctclass only (i.e. it does not use out-of-class data for discrimination). This leadsto a fast training for speech recognition, where the data is split accordingto classes and trained independently. However, this advantage is a commonproperty of generative training.
• Controlling the number of Gaussian mixtures usually leads to coarse genera-tive modeling, which is usually very effective for modeling the spectral infor-mation related to discrimination. Modeling the fine structure of the spectrummay lead to poor discrimination.

HMMs trained by a generative training procedure maximize the likelihood betweenthe data and the underlying distributions. However, if the true underlying distri-bution that generated the data is an HMM, given sufficient data, the Bayes clas-sification based on the HMM models, will minimize the probability of classifica-tion/recognition error [54]. Practically, the decision boundaries constructed after thegenerative training are not optimal and generative HMMs are not optimal modelsfor speech recognition applications. One way to address this problem within theHMM framework is to utilize the parameters efficiently to improve the discriminationbetween speech classes via discriminative training for HMM models [55, 56].
13.4.2 Discriminative Parameter EstimationHMM models trained using the EM algorithm are very effective for coarse genera-tion of data. Unfortunately, generative training does not address the classificationproblem, where the objective is to discriminate between the classes and hence toreduce the misclassification error. To address this problem, the Gaussians of anHMM can be rotated and shifted in the feature space to increase the discriminationbetween classes via a discriminative training procedure.The Conditional Maximum Likelihood (CML) criterion, defined by Equation 13.99,aims to maximize the log of posterior probability of the correct word sequence giventhe observations,

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 212

FCML(Λ) = R∑
r=1 logPΛ(Mwr |Xr)

= R∑
r=1 log pΛ(Xr |Mwr)P(wr)∑ŵ pΛ(Xr |Mŵ)P(ŵ)

≈ R∑
r=1 logpΛ(Xr |Mnumr)− logpΛ(Xr |Mdenr)

(13.99)

where Mw is a composite model corresponding to the word sequence w and P(w)is the probability of this sequence as determined by a language model. This dis-criminative training aims to maximize a term related to the probability of the correctmodels (known as the numerator) pΛ(Xr |Mnum), which is identical to the ML ob-jective function, and simultaneously minimize a term related to all incorrect modelsprobabilities (known as the denominator term) pΛ(Xr |Mden) ≈∑ŵ pΛ(Xr |Mŵ)P(ŵ).∑ŵ pΛ(Xr |Mŵ)P(ŵ), which is the summation over all possible word sequences ŵallowed in the task, is computationally expensive for LVCSR systems. As a result,pΛ(Xr |Mden) is an approximation to the denominator term, which is computed byN-best lists [57] or lattices [58, 59] generated from a decoding pass based on MLEtrained models.Extended Baum-Welch (EBW) algorithm is the state-of-the-art discriminative train-ing algorithm that maximize the CML criterion for HMMs.9 It was introduced fordiscriminative training for discrete distributions in [63]. Using a discrete approxi-mation to the Gaussian distribution [64], it was shown that the mean of a particulardimension of the Gaussian for state j , mixture component m, µjm and the corre-sponding variance, σ 2jm (assuming diagonal covariance matrices) can be reestimatedby µ̂jm = Cnumjm (X)− Cdenjm (X) + Dµjmγnumjm − γdenjm + D (13.100)
σ̂ 2jm = Cnumjm (X2)− Cdenjm (X2) + D(µ2jm + σ 2jm)γnumjm − γdenjm + D (13.101)

In these equations, D is a smoothing constant that controls the degree of devia-tion of the new parameters with respect to the old parameters. The superscriptsnum and den refer to the model corresponding to the correct word sequence, andthe recognition model for all word sequences, respectively. Figure 13.8 shows the
9For numerical optimization based methods see [60, 61]. Given an appropriate setting for learningparameters and smoothing terms, the EBW and gradient ascent algorithms can be equivalent [62].

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 213

Figure 13.8: Two class classification problem. (a) decision boundary is constructedwith EM generative training (b) decision boundary is constructed by EBW discrim-inative training.
decision boundary for a simple two class classification problem, where the Gaus-sians are shifted and rotated to improve the discrimination between classes. Thismay explain the basic idea behind the EBW update for Gaussian models. It maybe important to mention that Gaussian models estimated by discriminative trainingare not generative models. They are simply activation functions that have the samefunctional form of a Gaussian generative model and the same probabilistic con-straint (i.e. ∫x f (x|µ,Σ)dx = 1). Similarly, HMM models trained using discriminativeprocedures are not generative models or distributions.Setting the optimal value for D is the subject of extensive research and it is usuallyset per-Gaussian level, Djm, given the formula

Djm = max{2Dminjm , Eγdenjm }, (13.102)
where Dminjm is a necessary value to ensure positive variances and E is a globalconstant set to 1 or 2 [65]. It has been shown that there is a value of D, which provesthe convergence of the algorithm [66] and [67]. Using the reverse Jensen inequality

DRAFT13.4. SEQUENTIAL MODELING USING HIDDEN MARKOV MODELS 214

for e-family distributions [68], a closed form expression for Djm was derived and theheuristic in Equation 13.102 was justified [69]. The discriminative training of HMMmodels is usually initialized by ML generative training. For historical reasons,CML discriminative training for HMMs is known as Maximum Mutual InformationEstimation (MMIE) in speech recognition domain. The two criteria lead to thesame results because the language model parameters are not optimized during thetraining.Discriminative training based on the CML objective function does not directly mea-sure the expected WER criterion. Instead, the Overall Risk Criterion Estimation(ORCE) [70] directly minimizes the expected word or phone error rates by refiningthe model parameters based on a measure of risk related to recognition error. Theupdate equations of the parameters for ORCE was shown to be very similar to theEBW update equations described above for CML [71]. Minimum Phone Error (MPE)criterion may be considered as a particular realization of ORCE and it is given by
FMPE(Λ) = R∑

r=1
∑
w PΛ(Mw |Xr)A(w,wr) (13.103)

where A(w,wr) is the raw phone transcription accuracy of the sentence w , given thereference sentencewr . It has been reported that ORCE based on MPE criterion givesa small improvement over ORCE based on Minimum Word Error (MWE) criterion[72, 73]. Alternatively, the Minimum Classification Error (MCE) criterion [74] may beused to update the parameters of HMMs [75, 76, 77, 78]. Some discriminative criteriahave been compared in a unified framework for some tasks [79, 80]. To match thetraining and decoding criteria, ORCE based criteria can also be used for decodingtasks since they directly minimize the expected word error rate [81, 82].Recognition accuracy can be significantly increased by increasing the number ofhidden states in the HMM. We refer to this process as augmenting the state space,which aims to increase the capacity of observation distributions. This is usually doneby using context-dependent HMM models like tri-phone, quad-phone, or penta-phones, which use a window of left and right neighboring phones. The processof augmenting the state space increases dramatically the number of parameters,which need to be robustly estimated given the limited amount of training data andunseen context. Parameter tying allows acoustically similar units to share the sameparameters. Extensive research has been done on clustering the augmented statespace based on tied, context-dependent phonetic units to reduce model complexitygiven limited training data [83, 84, 85, 86].

DRAFT13.5. HYBRID NN/HMM MODELS 215

13.5 Hybrid NN/HMM models

In hybrid NN/HMM speech recognition systems [87], Neural Networks (NN) modelsare used as flexible discriminant classifiers to estimate a scaled likelihood. Inparticular, the emission probability score is given by
bj (xt) = PΛ(sj |xt)P(sj) (13.104)

where PΛ(sj |xt) is the posterior probability of a phonetic state estimated by a NNestimator [88] and P(sj) is estimated from the labeled data. In addition to discrimi-native training, if the posterior probability PΛ(sj |xt) is sensitive to acoustic context,bj (xt) score may help to overcome conditional independence assumption and improvethe overall recognition performance without changing the basic HMM framework.

DRAFT
216

DRAFT14.1. MODEL COMPLEXITY 217

14. Generalization

So clearly we don’t actually careabout training error, we don’t reallycare about making accuratepredictions on the training set, or ata least that’s not the ultimate goal.The ultimate goal is how well itmakes – generalization – how wellit makes predictions on examplesthat we haven’t seen before.— Andrew Ng
This chapter discusses various techniques to enhance a model’s ability to generalizeto new data. Methods like regularization, cross-validation, and dropout are high-lighted for reducing overfitting. Additionally, techniques such as batch normalizationand layer normalization are explored to improve training stability and performance.These approaches help models maintain accuracy on unseen data while preventingthem from fitting noise in the training set. By employing these methods, the chaptershows how to build more robust models. Each technique is explained in terms ofits contribution to better generalization.
14.1 Model Complexity
Model complexity refers to the capacity of a machine learning model to capturepatterns in data, which typically increases with the number of parameters or theflexibility of the model. A simple model, like a linear regression with only a fewparameters, is considered low in complexity. In contrast, more complex models,such as deep neural networks or high-degree polynomial regressions, can captureintricate relationships due to their flexibility and a large number of parameters.While increasing model complexity allows the model to better fit the training data,it also increases the risk of overfitting, which may hinder the model’s ability to

DRAFT14.1. MODEL COMPLEXITY 218

generalize to new, unseen data. Thus, finding the right level of complexity is crucialfor building models that perform well on both training and test sets.Underfitting occurs when a model is too simple and fails to capture the underlyingstructure or patterns in the data. This typically happens when the model has toofew parameters or is not complex enough to accommodate the true relationshipswithin the dataset. In this case, the model produces high errors on both the trainingand testing datasets because it cannot adequately describe the data, leading topoor performance. An underfitting model is characterized by a large bias, where itassumes that the relationship between input and output is overly simplistic, resultingin missed nuances or variations that the model should be able to capture.Overfitting happens when a model becomes too complex and starts to learn not onlythe patterns in the training data but also the noise and minor fluctuations that areirrelevant to the true underlying relationships. In this situation, the model fits thetraining data almost perfectly, resulting in very low training error, but it strugglesto generalize to new data, leading to higher test errors. Overfitting is common inmodels with too many parameters or in cases where the model is overly sensitiveto the specifics of the training dataset (i.e. high variance where a model learns notonly the underlying patterns in the training data but also the noise and randomfluctuations.). The key issue with overfitting is that while the model appears toperform well during training, it fails to maintain this performance when applied tounseen examples because it has essentially "memorized" the training set rather thanlearning a generalizable pattern.Figure 14.1 illustrates the phenomena of underfitting and overfitting. It visuallydemonstrates how these issues affect model performance in relation to complexity.To avoid both underfitting and overfitting, it’s crucial to find an optimal balance ofmodel complexity. A well-balanced model should be complex enough to capturethe important patterns in the data but not so complex that it starts modeling noise.Techniques like cross-validation, regularization (such as Ridge or Lasso) are oftenused to control the complexity of models and ensure they generalize well. Thisinvolves testing the model’s performance on both training and validation datasets todetect overfitting and underfitting issues and adjust the model accordingly. The goalis to select a model with sufficient complexity to accurately capture the relationshipsin the data while ensuring it performs well on unseen data, achieving a good trade-off between bias and variance.

DRAFT14.1. MODEL COMPLEXITY 219

Figure 14.1: There are two side-by-side plots: one illustrating polynomial regres-sion fits for degrees 1, 4, and 20, and the other displaying the corresponding train-ing and testing errors. In the first plot, degree 1 represents underfitting, where themodel is too simple (low complexity) and fails to capture the underlying pattern,leading to high error on both training and testing data. The degree 4 model demon-strates an appropriate balance between complexity and fit, capturing the data’spattern well without overfitting. The degree 20 model, however, shows overfitting,where the high complexity allows the model to fit noise in the training data, pro-ducing a very complex curve. In the second plot, the training error decreases asthe model’s complexity increases, but the testing error initially decreases and thenincreases for higher degrees, showing poor generalization in the overfitting case.This behavior emphasizes that a model that is either too simple or too complex canresult in poor predictive performance.
Mathematically, assume we have a dataset with input features x and a correspond-ing output Y that we want to predict. The true relationship between x and Y canbe represented as:

Y = f (x) + ε (14.1)where f (x) is the true underlying function that maps input x to the output Y and εis the noise term, representing the irreducible error in our observations, has a meanof zero E[ε] = 0 and Var(ε) = σ 2.Now, if we take the expected value of Y :
E[Y] = E[f (x) + ε] = f (x) + E[ε] = f (x)This shows that the expected output Y is equal to the true function f (x).When we evaluate a model f̂ (x) that attempts to predict Y , we can express the meansquared error (MSE) for a linear regression problem as:

DRAFT14.1. MODEL COMPLEXITY 220

MSE = E[(Y − f̂ (x))2]Substituting Y = f (x) + ε into the MSE gives us:
MSE = E[((f (x) + ε)− f̂ (x))2]Expanding this expression, we have:
MSE = E[(f (x) + ε − f̂ (x))2]Using the identity (a+ b)2 = a2 + 2ab+ b2, we get:

MSE = E[(f (x)− f̂ (x))2] + E[ε2] + 2E[(f (x)− f̂ (x))ε]Evaluating the Terms
1. First Term:

E[(f (x)− f̂ (x))2] = E
[(f (x)− E[f̂ (x)] + E[f̂ (x)]− f̂ (x))2]= E
[(f (x)− E[f̂ (x)])2] + E

[(E[f̂ (x)]− f̂ (x))2] + 2E[(f (x)− E[f̂ (x)])(E[f̂ (x)]− f̂ (x))]= f (x)2 + 2f (x)E[f̂ (x)] + E[f̂ (x)]2 + Var[f̂ (x)] + 2E[(f (x)− E[f̂ (x)])(E[f̂ (x)]− f̂ (x))]= (f (x)− E[f̂ (x)])2 + Var[f̂ (x)] + 2E[(f (x)− E[f̂ (x)])(E[f̂ (x)]− f̂ (x))]= Bias[f̂ (x)]2 + Var[f̂ (x)] + 2E[(f (x)E[f̂ (x)]− f (x)f̂ (x)− E[f̂ (x)]2 + E[f̂ (x)]f̂ (x)]= Bias[f̂ (x)]2 + Var[f̂ (x)] + 2f (x)E[f̂ (x)]− 2f (x)E[f̂ (x)]− 2E[f̂ (x)]2 + 2E[f̂ (x)]2= Bias[f̂ (x)]2 + Var[f̂ (x)] + 0= Bias[f̂ (x)]2 + Var[f̂ (x)], (14.2)where Bias[f̂ (x)]2 = (f (x) − E[f̂ (x)])2 and Var[f̂ (x)] = E
[(E[f̂ (x)] − f̂ (x))2] =

E
[(f̂ (x)− E[f̂ (x)])2].

2. Second Term: The expected value of the squared noise is:
E[ε2] = σ 2

3. Third Term: The covariance term E[(f̂ (x) − f (x))ε] is zero, assuming the noiseis independent of the model’s predictions:
E[(f̂ (x)− f (x))ε] = 0

DRAFT14.2. REGULARIZATION 221

Putting it all together, we have:
MSE = Bias[f̂ (x)]2 + Var[f̂ (x)] + σ 2 (14.3)Thus, the irreducible noise error, represented by σ 2, is the part of the total errorthat cannot be reduced by improving the model. This derivation highlights the roleof noise in the context of expected mean squared error in a predictive model.

14.2 Regularization
This technique combats overfitting by adding a penalty term to the model’s loss func-tion, discouraging overly complex models and promoting simpler and more general-ized representations. Techniques like L0, L1, and L2 regularization help to controlmodel complexity and prevent overfitting.
14.2.1 L0 RegularizationL0 regularization directly influences the number of features or weights that remainactive, forcing many weights to be exactly zero. Unlike L1 or L2 regularization,which provide smooth, differentiable loss functions, L0 regularization is inherently"non-differentiable" because it operates based on counting non-zero elements, nottheir magnitudes.Because of this non-differentiability, standard gradient-based optimization tech-niques, such as Stochastic Gradient Descent (SGD), are not applicable. Instead,finding an optimal solution for L0 regularization involves combinatorial optimiza-tion, where the goal is to search through all possible combinations of which weightsshould be kept or pruned.In mathematical terms, the objective is to solve an optimization problem like:

Ereg(w) = E(w) + λ n∑
i=1 1(wi ̸= 0)

Here, we have to evaluate many possible subsets of non-zero weights, which leads toan exponential search space. The number of possible subsets of features or weightsis 2n for n weights, making this problem NP-hard. Each possible subset of weightsneeds to be evaluated in terms of how it contributes to minimizing the overall lossfunction.Consider a simple model with 3 weights w = [w1, w2, w3]. The L0 regularizationproblem involves determining whether each of these weights should be included inthe model (non-zero) or pruned (set to zero). The possible combinations of non-zeroweights are:[w1, w2, w3], [w1, w2, 0], [w1, 0, w3], [0, w2, w3], [w1, 0, 0], [0, w2, 0], [0, 0, w3], [0, 0, 0].

DRAFT14.2. REGULARIZATION 222

This example shows how the number of possible configurations grows exponentiallywith the number of weights. For each of these combinations, the model needs toevaluate the loss function, making the optimization process extremely computation-ally intensive.In conclusion, L0 regularization requires combinatorial optimization because theproblem involves selecting the best combination of non-zero weights from an expo-nentially large set of possibilities.
14.2.2 L1 Regularization (Lasso)L1 regularization encourages sparsity in the weight vector by penalizing the sum ofthe absolute values of the weights. The modified loss function with L1 regularizationis given by::

Ereg(w) = E(w) + λ n∑
i=1 |wi|To compute the gradient of the L1 regularizer, we need to differentiate the absolutevalue term. The gradient of |wi| with respect to wi is:

ddwi |wi| =


1 if wi > 0−1 if wi < 0undefined if wi = 0Thus, the gradient of the L1 regularization term is:
∂∂wi (λw1) = λ · sign(wi)Where sign(wi) is the sign function that outputs 1, −1, or 0 based on whether wi ispositive, negative, or zero, respectively.

14.2.3 L2 Regularization (Ridge)L2 regularization adds a penalty proportional to the square of the weights. Theregularized loss function for L2 is given by:
Ereg(w) = E(w) + λ2 n∑

i=1 w2i
The gradient of the L2 regularization term with respect to wi is:

∂∂wi
(λ2 n∑

i=1 w2i
) = λwi

DRAFT14.2. REGULARIZATION 223

Thus, the gradient of L2 regularization is proportional to the weight value itself. Asummary of Regularizers
Regularization Effect on Weights Feature Selection SparsityL0 Limits number of non-zero weights Yes YesL1 (Lasso) Drives weights to zero Yes YesL2 (Ridge) Shrinks weights but keeps all features No No

In conclusion, L1, L2, and L0 regularizations each provide a method to control modelcomplexity, with different trade-offs in promoting sparsity and computational stabil-ity. L1 encourages sparsity, L2 shrinks weights while retaining all features, and L0selects a minimal subset of features.
14.2.4 Label SmoothingLabel smoothing is a regularization technique used in classification tasks to improvemodel generalization by modifying the target labels. Instead of using hard labels(0s and 1s), label smoothing assigns a small probability to incorrect classes, effec-tively softening the target distribution. By mathematically redistributing the label’sprobability mass, it enhances the model’s ability to generalize to unseen data.Let’s explore the mathematics of label smoothing in detail, focusing on the formula-tion, the loss function, and the implications for training. In a multiclass classificationproblem with C classes, we represent the true label using a one-hot encoded vector
t:

t = [0, 1, 0, . . . , 0]Label smoothing modifies this one-hot vector to create a smoothed target vector t̃:
t̃ = (1− ε)t + εC 1,

where ε is the smoothing parameter (e.g., 0.1) and 1 is a vector of ones of size C .For Example, Assuming C = 3 (three classes) and ε = 0.1:
t = [0, 1, 0],

and after applying label smoothing:
t̃ = (1− 0.1)[0, 1, 0] + 0.13 [1, 1, 1] = [0 + 0.033, 0.9, 0 + 0.033] = [0.033, 0.9, 0.033]

The categorical cross-entropy loss for a predicted probability distribution y is de-fined as:

DRAFT14.3. DROPOUT REGULARIZATION 224

E (t, y) = − C∑
i=1 ti log(yi),

and when we use the smoothed labels, this loss function becomes:
E (̃t, y) = − C∑

i=1 t̃i log(yi)
Substituting the smoothed label t̃i:

E (̃t, y) = − C∑
i=1
((1− ε)ti + εC) log(yi)

This can be separated into two terms:
E (̃t, y) = − C∑

i=1 (1− ε)ti log(yi)− C∑
i=1

εC log(yi)
The first term resembles the standard cross-entropy loss but is scaled by (1 − ε),which reduces the contribution of the true class. The second term adds a penalty forall classes, distributing some loss across incorrect classes, effectively encouragingthe model to assign non-zero probabilities to them. During training, if the modelbecomes overly confident in predicting the distribution, the first term will approachzero while the second term will rise significantly. Thus, label smoothing effectivelyacts as a regularizer, helping to prevent the model from making overly confidentpredictions. In other words, the second term minimizes the entropy between auniform distribution over classes and the predicted distribution, encouraging lessconfident predictions. By softening the target labels, label smoothing reduces themodel’s confidence in its predictions, which can help prevent overfitting to noise inthe training data.Models trained with label smoothing often produce more calibrated probability dis-tributions, meaning their predicted probabilities better reflect the true likelihoodsof the classes. In addition, the modified loss function results in smoother gradients,which can lead to more stable training dynamics, especially in complex models likedeep neural networks. This technique has been shown to be effective in improvingthe performance of models on various tasks.
14.3 Dropout Regularization
Dropout is a regularization technique used to improve the generalization perfor-mance of deep neural networks by preventing overfitting [90]. It works by randomly

DRAFT14.3. DROPOUT REGULARIZATION 225

"dropping out" units (neurons) from the neural network during training. This meansthat, at each training step, a subset of neurons is ignored, and the network is forcedto adapt without relying on specific neurons. As a result, the network becomes morerobust and generalizes better to unseen data. Dropout introduces noise into thetraining process, which can be viewed as a form of regularization, as highlighted inBishop’s work [91]. This noise, introduced by randomly deactivating neurons, forcesthe network to generalize better by preventing it from relying too heavily on specificneurons. This mechanism of adding noise helps avoid overfitting, making dropoutan implicit regularizer for neural networks.In a fully connected neural network, each neuron in a given layer is connected toevery neuron in the next layer as shown in Figure 14.2. During training, dropoutrandomly disables a fraction p (referred to as the dropout rate) of neurons in eachlayer with probability p, which effectively means these neurons do not participatein forward or backward propagation during that iteration. This is typically done bymultiplying the activations of these neurons by 0.Mathematically, if hi is the output of neuron i in some layer during training, thedropout step can be described as:
hi = ri · h̃i, (14.4)where ri is a random binary variable (1 with probability 1−p and 0 with probabilityp) and h̃i is the original activation of the neuron before dropout.During training, the network learns not to rely on any specific neuron but instead todistribute the learned representations across many neurons. This reduces overfittingbecause, during inference (when dropout is not applied), the model can perform wellon unseen data by leveraging all neurons.During the inference phase (after training), dropout is no longer applied. To accountfor the fact that more neurons are active during inference than during training, theweights of the neurons are scaled by a factor of 1−p. This ensures that the overallactivations remain approximately the same as during training. If wi is the weight ofneuron i, then during inference, we use:

hi = (1− p) · h̃i (14.5)This compensates for the fact that neurons were randomly dropped during training.Dropout helps improve generalization by:• Reducing Overfitting By randomly dropping units, dropout prevents the net-work from over-relying on specific neurons, forcing it to learn more robustfeatures that generalize well to unseen data.• Implicit Ensemble Method Dropout can be viewed as training a large number ofdifferent networks (by randomly dropping neurons) and averaging them, which

DRAFT
14.3. DROPOUT REGULARIZATION 226

acts as a form of model ensembling. This boosts the network’s robustness.• Improving Neuron Independence: By ensuring that no neuron can fully dom-inate the decision-making process, dropout promotes independence betweenneurons. This leads to learning representations that are less correlated andmore useful for generalization.Consider a toy neural network with three input neurons and two hidden layers,each with four neurons. Applying dropout with p = 0.5 means that, at each trainingiteration, approximately half of the neurons in each hidden layer will be randomlydropped. This leads to various subnetworks being trained at each iteration, pre-venting over-reliance on particular pathways.The overall impact of dropout can be mathematically summarized by modifying theloss function with dropout applied:
Edropout = Er [E(w, r)] (14.6)Where r represents the random dropout masks applied to the neurons. The ex-pectation over all possible dropout masks ensures that the network learns a moregeneralized solution. In conclusion, dropout is an effective regularization techniquethat enhances a model’s ability to generalize by preventing overfitting, effectivelyacting as an implicit ensemble of networks.

Figure 14.2: Dropout regularization: On the left, a conventional feedforward neuralnetwork with two hidden layers is shown. On the right, a reduced version of thesame network is depicted, where dropout has been applied. The crossed-out neuronsindicate the units that have been removed during training. The illustration closelyresembles the one shown in the referenced paper [90].

DRAFT14.4. NORMALIZATION 227

14.4 Normalization
The Batch Normalization (BatchNorm) and Layer Normalization (LayerNorm) alsointroduce slight variations in the input values, which can be seen as introducingnoise during training. This added noise acts as a form of regularization [91], helpingto improve the model’s generalization ability by preventing overfitting in a mannersimilar to other regularization techniques. They already discussed in Chapter 11.
14.4.1 Batch NormalizationBatch Normalization is applied during training to normalize the activations of eachlayer across a mini-batch of data. It does this by adjusting the mean and variance ofthe activations, which helps in stabilizing and speeding up training. Mathematically,BatchNorm normalizes a batch of data as:

x̂i = xi − µbatchσbatch , (14.7)
where µbatch is the mean of the batch and σbatch is the standard deviation of thebatch.It then introduces learnable parameters, γ (scale) and β (shift), allowing the networkto maintain the capacity to learn features that are beneficial to the task at hand.Batch normalization helps smooth the optimization surface, making the trainingprocess more stable and allowing the model to converge more quickly. In addition,BatchNorm introduces some noise to the network due to the small fluctuationsbetween mini-batches. This acts as a regularizer, similar to dropout, reducing thechances of overfitting. Moreover, by normalizing the activations, BatchNorm reducesthe issue of vanishing or exploding gradients, which can help deeper networksgeneralize better by stabilizing the training dynamics.
14.4.2 Layer NormalizationLayer Normalization normalizes across the features of a single sample rather thanacross the batch [92]. It’s more commonly used in recurrent neural networks (RNNs)and Transformers because it doesn’t depend on batch size, making it more suitedfor sequential data.The normalized output for LayerNorm is:

x̂i = xi − µlayerσlayer , (14.8)
where µlayer is the mean of the activations across all the features in a layer andσlayer is the standard deviation of the activations across all the features in a layer.

DRAFT14.4. NORMALIZATION 228

Since LayerNorm doesn’t depend on the batch size, it provides consistent normal-ization regardless of how data is split into batches. This consistency can improvegeneralization, especially in settings like natural language processing (NLP) whereinput sequence lengths vary. For sequential data like in RNNs and Transformers,LayerNorm is better suited than BatchNorm as it ensures stable gradients through-out the sequence. This stability helps the network generalize better across varioussequence lengths. The difference between Layer Normalization and Batch Normal-ization is illustrated in Figure 14.3.

Figure 14.3: Layer Normalization and batch Normalization both stabilize and speedup neural network training, but they differ in how they normalize inputs. LayerNormalization normalizes across the feature dimension for each individual sample,making it more suited for tasks where batch size is small or variable. In contrast,Batch Normalization normalizes across the batch dimension, meaning it computesthe mean and variance for each feature across a mini-batch, which introduces de-pendencies between samples in the batch.
In conclusion, BatchNorm tends to improve generalization more effectively in con-volutional neural networks (CNNs) and feed-forward networks by reducing internalcovariate shifts1 and helping the network learn more robust features. LayerNorm,on the other hand, is effective in NLP models, such as Transformers, where datadependencies are sequential or vary in size. It improves generalization by ensuringsmoother and more stable training dynamics.

1Internal Covariate Shift refers to the phenomenon where the distribution of inputs to each layer ofa neural network changes during training, due to updates in the parameters of the preceding layers.This shift happens because as weights are updated in each training step, the output of a layer (whichis the input to the next layer) changes its distribution. This shift can slow down training since themodel has to constantly adapt to the changing input distribution [93].

DRAFT14.4. NORMALIZATION 229

14.4.3 Root Mean Square NormalizationRoot Mean Square Layer Normalization (RMSNorm) is often used as a replacementfor LayerNorm (Layer Normalization) because it simplifies the normalization processand reduces computational overhead [94].RMSNorm simplifies this process by skipping the mean subtraction and using onlythe root mean square (RMS) of the input. We first compute the Root Mean Square:
RMS(x) =

√√√√1d d∑
i=1 x2i , (14.9)

where d is the dimension of x vector. Then, the input is normalized by dividing eachelement by the RMS value: x̂i = xiRMS(x) (14.10)
Similar to LayerNorm, a learnable scale parameter γ is applied to the normalizedvalues:

yi = γx̂i (14.11)RMSNorm is computationally more efficient than LayerNorm since it skips the cal-culation of the mean and variance, reducing the number of operations involved innormalization. In addition, by focusing only on the magnitude (via the RMS), RM-SNorm simplifies the regularization process, potentially improving training dynamicsin certain models (e.g., Transformers). Moreover, RMSNorm introduces less variancein the gradients during training, which can help improve stability in some cases.The gradient stability of RMSNorm with respect to LayerNorm can be explained asfollows: LayerNorm normalizes across the features of a single training example bysubtracting the mean and dividing by the standard deviation. Given an input vector
x = (x1, x2, . . . , xd), the normalized output x̂i for each element xi is computed as:

x̂i = xi − µ√σ 2 + ε , (14.12)
where µ = 1d∑di=1 xi is the mean of the input vector, σ 2 = 1d∑di=1(xi − µ)2 is thevariance, and ε is a small constant added for numerical stability.The gradient of µ with respect to xj is:∂µ∂xj = 1d, (14.13)
and the gradient of Variance σ 2:

∂σ 2∂xj = ∂ 1d∑di=1(xi − µ)2∂xj = 2d (xj − µ) (14.14)

DRAFT14.5. CROSS-VALIDATION 230

Using the quotient rule, the gradient of x̂i with respect to xj involves both the meanand variance: ∂x̂i∂xj = 1√σ 2 + ε δij − xi − µ(σ 2 + ε)3/2 ∂σ 2∂xj − 1√σ 2 + ε ∂µ∂xj (14.15)
Substitute the gradients of µ and σ 2:

∂x̂i∂xj = 1√σ 2 + ε δij − (xi − µ)(xj − µ)n(σ 2 + ε)3/2 − 1n√σ 2 + ε= 1√σ 2 + ε
(δij − 1n − (xi − µ)(xj − µ)n(σ 2 + ε)

) (14.16)
This expression has additional complexity because of the terms involving the inputmean µ and variance σ 2, introducing correlations between the input dimensions.On the other hand, the gradient of RMS with respect to xj is:

∂RMS(x)∂xj = xjn · RMS(x) (14.17)
Using the quotient rule, the gradient of the normalized output, x̂i, with respect to xjis: ∂x̂i∂xj = ∂∂xj

(xiRMS(x)
) = 1RMS(x)δij − xiRMS2(x) · ∂RMS(x)∂xj (14.18)

Substituting the gradient of RMS:∂x̂i∂xj = 1RMS(x)δij − xixjn · RMS3(x)
= 1RMS(x)

(δij − xixjnRMS2(x)
) (14.19)

The gradient stability is clearer in RMSNorm where only the RMS is used fornormalization, which simplifies the gradient. The absence of the mean subtractionresults in less interaction between the input elements, thus reducing the variance inthe gradients. This can lead to more stable training, especially in deeper networks.In LayerNorm, the presence of the mean µ and variance σ 2 introduces more complexinteractions between the elements of the input, leading to higher gradient variance,especially in deep networks. The gradient contains terms involving both the inputmean and the variance.

DRAFT14.5. CROSS-VALIDATION 231

Figure 14.4: In K-fold cross-validation, the dataset is divided into k equal partsor folds. The model is trained on k-1 folds while the remaining fold is used forevaluation. This process is repeated k times, each time using a different fold as thevalidation set. Finally, the performance scores from all iterations are averaged toobtain the overall model performance.
14.5 Cross-Validation
Cross-Validation is a powerful technique used to estimate a model’s performance onunseen data. It involves splitting the available data into multiple subsets, training themodel on a portion of the data, and evaluating its performance on the remaining testset. Cross-validation provides a more robust estimation of the model’s generalizationability, helping in model selection and hyperparameter tuning.A common approach of cross-validation is of K-fold cross-validation which is a statis-tical technique used to assess a model’s generalization performance by partitioningthe dataset into several subsets (or folds) and then performing multiple trainingand validation rounds. This approach provides a more robust estimate of modelperformance than a simple train-test split, especially when the dataset is small orimbalanced. Here’s a detailed description, followed by the mathematical basis forwhy it improves generalization.The K-fold cross-validation is implemented as follows (see Figure 14.4):1. Partitioning The dataset D = {(xi, yi)}ni=1 is divided into K approximatelyequal-sized folds: D1, D2, . . . , DK .

2. Training and Validation: For each fold k (where k = 1, 2, . . . , K):- Use fold Dk as the validation set.- Use the remaining K − 1 folds as the training set.

DRAFT
14.5. CROSS-VALIDATION 232

3. Evaluation: Compute the performance (e.g., accuracy, loss) for each validationfold Dk , resulting in K performance scores.4. Average Performance: The overall performance of the model is estimated byaveraging the K validation scores:
Performanceavg = 1K K∑

k=1 Performancek .
This approach allows each data point to serve as part of both training and validationsets, providing a more comprehensive measure of model performance.Let R̂k (w) be the empirical risk (e.g., the validation error) on fold k of the K-foldcross-validation. Then, the overall K-fold cross-validation estimate R̂CV(w) is:

R̂CV(w) = 1K K∑
k=1 R̂k (w). (14.20)

The variance of R̂CV(w) is given by:
Var(R̂CV(w)) = Var(1K K∑

k=1 R̂k (w)) . (14.21)
By the properties of variance, if we assume the risks R̂k (w) have a common varianceσ 2 and pairwise covariances ρσ 2 (where ρ is the correlation coefficient betweendifferent folds), the variance can be expanded as:

Var(R̂CV(w)) = 1K 2
K∑
k=1 Var(R̂k (w)) + 1K 2 ∑i̸=j Cov(R̂i(w), R̂j (w)). (14.22)

This becomes: Var(R̂CV(w)) = 1K σ 2 + K (K − 1)K 2 ρσ 2. (14.23)Simplifying, we get: Var(R̂CV(w)) = σ 2K (1 + (K − 1)ρ). (14.24)
If ρ = 0 (folds are independent), this reduces to σ2K , showing the ideal variancereduction. But in practice, folds are not independent, so ρ typically has a positivevalue, and the actual reduction in variance is less than σ2K .In summary, K-fold cross-validation enhances generalization by reducing the vari-ability in model performance estimates by averaging over multiple folds (i.e. variancereduction) and providing a comprehensive assessment of model performance by en-suring each data point is used in both training and validation, allowing the modelto generalize better to unseen data (i.e. more robust estimation or bias reduction).

DRAFT14.6. DATA AUGMENTATION 233

14.6 Data Augmentation

Figure 14.5: Image augmentation involves applying a series of random transforma-tions to the original image, such as horizontal flipping, rotation, zooming, translation,and contrast adjustment.Data augmentation is a technique used to improve generalization in machine learn-ing models by artificially increasing the diversity of the training data. Mathemati-cally, it can be viewed as a way to reduce overfitting by expanding the dataset tobetter approximate the true data distribution.Consider a simple linear model f (x ; w) = wT x with a mean squared error (MSE) loss.For a dataset augmented with Gaussian noise, where x̃i = xi+ ε and ε ∼ N (0, σ 2I),the loss over the augmented data can be written as:
Eaug(w) = 1N N∑

i=1 Eε∼N (0,σ2I) [(yi − wT (xi + ε))2] . (14.25)
Expanding this expression:

Eaug(w) = 1N N∑
i=1
((yi − wT xi)2 + σ 2wTw

) . (14.26)
This augmented loss now includes a regularization term σ 2wTw, which preventslarge weights and promotes generalization (see Section 14.2.3).

DRAFT14.7. ENSEMBLE METHODS 234

In summary, data augmentation enhances generalization by introducing an implicitregularization term in the loss function, reducing the variance of the model’s predic-tions without adding significant bias, and more closely approximating the true datadistribution, thus lowering the risk of overfitting. A sample of data augmentation foran image is shown in Figure 14.5.
14.7 Ensemble Methods

Figure 14.6: Parallel methods train models independently and simultaneously, whilesequential methods build each new model based on the errors of the previous modelin a step-by-step process.

DRAFT14.7. ENSEMBLE METHODS 235

Ensemble methods improve generalization by combining predictions from multiplemodels to reduce variance, bias, or both, leading to a more robust predictor. Thekey intuition is that aggregating the outputs of several models minimizes the riskof overfitting to particular patterns in a dataset, as each model provides a uniqueperspective. As shown in Figure 14.6, Ensemble methods can be classified intotwo types: parallel methods (e.g. bagging), which train models independently andsimultaneously, and sequential methods (e.g. boosting), which build each new modelincrementally by addressing the errors of the previous model.In bagging (i.e. Bootstrap Aggregating), several models are trained independentlyon different bootstrap samples2 of the training data, and their outputs are averagedor voted upon to produce a final prediction. Majority voting aggregates predictionsfrom multiple models and selects the most common prediction as the final output.Hence, this approach enhances predictive accuracy by leveraging the strengths ofmultiple models.Suppose we have M independent models f1(x), f2(x), . . . , fM (x) trained on boot-strapped samples of the dataset, each predicting ŷi for an input x . For regression,the ensemble prediction is the mean:
ŷensemble = 1M M∑

m=1 fm(x). (14.27)
Assuming each model has variance σ 2 and they are uncorrelated, the variance ofthe ensemble prediction is given by:

Var(ŷensemble) = 1Mσ 2. (14.28)This reduction in variance improves generalization, as the ensemble is less sensitiveto fluctuations in any single training set compared to individual models.Boosting reduces bias by training a sequence of models where each model attemptsto correct errors made by the previous ones. This can be particularly beneficialfor weak models, such as a simple linear regression model that can be weak forcomplex relationships. Let the final model F (x) be a weighted sum of M modelsf1(x), f2(x), . . . , fM (x):
F (x) = M∑

m=1αmfm(x), (14.29)
where αm are weights that depend on the model’s performance in predicting thedata. For each iteration m, the model fm(x) is trained to minimize the loss on the

2Bootstrap samples are randomly drawn subsets of a dataset created by sampling with replacement.When generating bootstrap samples, each original data point has a chance to be selected multipletimes, or not at all, in a single sample.

DRAFT14.7. ENSEMBLE METHODS 236

residuals from the previous model. This iterative correction reduces bias at eachstep. Hence, boosting aims to achieve a lower overall error, improving generalizationon unseen data. By combining models, ensemble methods reduce variance (bagging)or bias (boosting), thereby improving generalization. Each model’s prediction errorscomplement each other, resulting in a more stable and accurate ensemble model.

DRAFTBibliography
[1] R. G. Gallager. Information Theory and Reliable Communication. Wiley, 1968.
[2] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.
[3] David MacKay. Information Theory, Pattern Recognition, and Neural Networks.Cambridge University Press, 2003.
[4] C. E. Shannon. A mathematical theory of communication. Bell System TechnicalJournal, 27:379–423, 623–656, jul , oct 1948.
[5] L. R. Rabiner. A tutorial on hidden Markov models and selected applications inspeech recognition. Proc. of IEEE, 77(2):257–286, February 1989.
[6] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.
[7] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Gan-guli. Deep unsupervised learning using nonequilibrium thermodynamics, 2015.
[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilisticmodels, 2020.
[9] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image syn-thesis, 2021.

[10] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 1999.
[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning appliedto document recognition. Proc. of IEEE, 86(11):2278–2324, 1998.
[12] Ning Qian. On the momentum term in gradient descent learning algorithms.In Neural networks: the official journal of the International Neural NetworkSociety, volume 12, pages 145–151, 1999.
[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methodsfor online learning and stochastic optimization. Journal of machine learningresearch, 12(7):2121–2159, 2011.
[14] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks formachine learning lecture 6a: overview of mini-batch gradient descent, 2012.

237

DRAFTBIBLIOGRAPHY 238

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,2017.
[16] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven C. H. Hoi, and WeinanE. Towards theoretically understanding why SGD generalizes better thanADAM in deep learning. CoRR, abs/2010.05627, 2020.
[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. CoRR,abs/1810.04805, 2018.
[18] S.B. Davis and P. Mermelstein. Comparison of parametric representation formonosyllabic word recognition in continuously spoken sentences. IEEE Trans-actions on Acoustics, Speech, and Signal Processing, 28(4):357–366, 1980.
[19] Lawrence R. Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recog-nition. Prentice Hall, 1993.
[20] Ben Gold and Nelson Morgan. Speech and Audio Signal Processing: Processingand Perception of Speech and Music. Wiley, 1999.
[21] S. Furui. Speaker independent isolated word recognizer using dynamic featuresof the speech spectrum. IEEE Transactions on Acoustics, Speech, and SignalProcessing, 34(1):52–59, Feb 1986.
[22] John S. Bridle. Probabilistic interpretation of feedforward classification networkoutputs, with relationships to statistical pattern recognition. In Françoise Fo-gelman Soulié and Jeanny Hérault, editors, Neurocomputing, pages 227–236,Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.
[23] E.T. Jaynes. On the rationale of maximum-entropy methods. Proceedings of theIEEE, 70(9):939–952, 1982.
[24] Cs231n convolutional neural networks for visual recognition. 2018.https://cs231n.github.io/convolutional-networks/.
[25] A comprehensive tutorial to learn convolutional neural net-works from scratch (deeplearning.ai course #4). 2018.https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/.
[26] Machine learning practical course. 2020.https://www.inf.ed.ac.uk/teaching/courses/mlp/2019-20/lectures/mlp08-cnn2.pdf.

DRAFTBIBLIOGRAPHY 239

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-basedlearning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-tion with deep convolutional neural networks. Advances in neural informationprocessing systems, 25, 2012.
[29] Brett Koonce and Brett Koonce. Resnet 50. Convolutional neural networkswith swift for tensorflow: image recognition and dataset categorization, pages63–72, 2021.
[30] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,1990.
[31] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of trainingrecurrent neural networks, 2013.
[32] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neuralcomputation, 9(8):1735–1780, 1997.
[33] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional LSTMnetworks for improved phoneme classification and recognition. In InternationalConference on Artificial Neural Networks, pages 799–804. Springer, 2005.
[34] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-sentations using RNN encoder–decoder for statistical machine translation. InProceedings of the 2014 Conference on Empirical Methods in Natural LanguageProcessing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Associationfor Computational Linguistics.
[35] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Em-pirical evaluation of gated recurrent neural networks on sequence modeling. InNIPS 2014 Workshop on Deep Learning, December 2014, 2014.
[36] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independentlyrecurrent neural network (indrnn): Building a longer and deeper rnn, 2018.
[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.CoRR, abs/1706.03762, 2017.
[38] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improvinglanguage understanding by generative pre-training. 2018.

DRAFTBIBLIOGRAPHY 240

[39] Irving J Good. The population frequencies of species and the estimation ofpopulation parameters. Biometrika, 40(3-4):237–264, 1953.[40] Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilisticdependences in stochastic language modelling. Computer Speech & Language,8(1):1–38, 1994.[41] Stanley F Chen and Joshua Goodman. An empirical study of smoothing tech-niques for language modeling. Computer Speech & Language, 13(4):359–394,1999.[42] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learningwith neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, andK.Q. Weinberger, editors, Advances in Neural Information Processing Systems,volume 27. Curran Associates, Inc., 2014.[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappingsin deep residual networks. CoRR, abs/1603.05027, 2016.[44] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-lation by jointly learning to align and translate, 2016.[45] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective ap-proaches to attention-based neural machine translation. CoRR, abs/1508.04025,2015.[46] Albert Gu. Modeling Sequences with Structured State Spaces. Stanford Uni-versity, 2023.[47] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selectivestate spaces. arXiv preprint arXiv:2312.00752, 2023.[48] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedi-gos, Erez Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz,Omri Abend, Raz Alon, Tomer Asida, Amir Bergman, Roman Glozman, MichaelGokhman, Avashalom Manevich, Nir Ratner, Noam Rozen, Erez Shwartz, MorZusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba languagemodel, 2024.[49] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood fromincomplete data via the em algorithm. Journal of the royal statistical society:series B (methodological), 39(1):1–22, 1977.[50] Jeff A Bilmes et al. A gentle tutorial of the em algorithm and its application toparameter estimation for gaussian mixture and hidden markov models. Interna-tional computer science institute, 4(510):126, 1998.

DRAFTBIBLIOGRAPHY 241

[51] Maya R Gupta, Yihua Chen, et al. Theory and use of the em algorithm. Foun-dations and Trends® in Signal Processing, 4(3):223–296, 2011.
[52] Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1997.
[53] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-complete data via the EM algorithm. Journal of the Royal Statistical Society,39(1):1–38, 1977.
[54] A. Nadas. A decision theoretic formulation of a training problem in speechrecognition and a comparison of training by unconditional versus conditionalmaximum likelihood. IEEE Transactions on Acoustics, Speech and Signal Pro-cessing, 31(4):814–817, 1983.
[55] Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, and Robert L. Mercer. Maximummutual information estimation of hidden Markov model parameters for speechrecognition. In Proc. IEEE ICASSP, pages 49–52, Tokyo, Japan, 1986.
[56] Peter F. Brown. The Acoustic-Modelling Problem in Automatic Speech Recog-nition. PhD thesis, Carnegie Mellon University, 1987.
[57] Yen-Lu Chow. Maximum Mutual Information estimation of HMM parametersfor continuous speech recognition using the N-best algorithm. In Proc. IEEEICASSP, pages 701–704, Albuquerque, NM, April 1990.
[58] Y. Normandin, R. Lacouture, and R. Cardin. MMIE training for large vocabularycontinuous speech recognition. In Proc. ICSLP, pages 1367–1370, Yokohama,Japan, 1994.
[59] V. Valtchev, J. J. Odell, P. C. Woodland, and S. J. Young. MMIE training of largevocabulary speech recognition systems. Speech Communication, 22(4):303–314,1997.
[60] S. Kapadia, V. Valtchev, and S.J. Young. MMI training for continuous phonemerecognition on the TIMIT database. In Proc. IEEE ICASSP, volume 2, pages491–494, Minneapolis, MN, USA, April 1993.
[61] Sadik Kapadia. Discriminative Training of Hidden Markov Models. PhD thesis,University of Cambridge, 1998.
[62] R. Schlüter, W. Macherey, S. Kanthak, H. Ney, and L. Welling. Comparison of op-timization methods for discriminative training criteria. In Proc. EUROSPEECH,pages 15–18, Rhodes, Greece, 1997.

DRAFTBIBLIOGRAPHY 242

[63] P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, and D. Nahamoo. An inequalityfor rational function with applications to some statistical estimation problems.IEEE Transactions on Information Theory, 37(1):107–113, Jan 1991.
[64] Y. Normandin. Hidden Markov Models, Maximum Mutual Information Estimationand the Speech Recognition Problem. PhD thesis, McGill University, 1991.
[65] P. Woodland and D. Povey. Large scale discriminative training for speech recog-nition. In ISCA ITRW Automatic Speech Recognition: Challenges for the Mille-nium, pages 7–16, 2000.
[66] A. Gunawardana and W. Byrne. Discriminative speaker adaptation with con-ditional maximum likelihood linear regression. In Proc. EUROSPEECH, pages1203–1206, Aalborg, Denmark, 2001.
[67] Dimitri Kanevsky. Extended Baum transformations for general functions. InProc. IEEE ICASSP, volume 5, Montreal, Canada 2004.
[68] Tony Jebara. Discriminative, Generative, and Imitative Learning. PhD thesis,Massachusetts Institute of Technology, 2002.
[69] Mohamed Afify. Extended Baum-Welch reestimation of Gaussian mixture modelsbased on reverse Jensen inequality. In Proc. INTERSPEECH, pages 1113–1116,Lisbon, Portugal, 2005.
[70] K. Na, B. Jeon, D. Chang, S. Chae, and S. Ann. Discriminative training of hiddenMarkov models using overall risk criterion and reduced gradient method. InProc. EUROSPEECH, pages 97–100, Madrid, Spain, September 1995.
[71] Janez Kaiser, Bogomir Horvat, and Zdravko Ka. Overall risk criterion estimationof hidden Markov model parameters. Speech Communication, 38(3-4):383–398,2002.
[72] D. Povey and P.C. Woodland. Minimum phone error and I-smoothing for im-proved discriminative training. In Proc. IEEE ICASSP, volume 1, pages 105–108,Orlando, FL, May 2002.
[73] D. Povey. Discriminative Training for Large Vocabulary Speech Recognition.PhD thesis, University of Cambridge, 2004.
[74] B.H. Juang and S. Katagiri. Discriminative learning for minimum error classifi-cation. IEEE Transactions on Signal Processing, 40(12):3043– 3054, December1992.

DRAFTBIBLIOGRAPHY 243

[75] W. Chou, B. H. Juang, and C. H. Lee. Segmental GPD training of HMM basedspeech recognizer. In Proc. IEEE ICASSP, volume 1, pages 473–476, San Fran-cisco, CA, USA, 1992.
[76] W. Chou, C. H. Lee, and B. Juang. Minimum error rate training based on N-beststring models. In Proc. IEEE ICASSP, volume 2, pages 652–655, Minneapolis,MN, USA, April 1993.
[77] W. Reichl and G. Ruske. Discriminative training for continuous speech recogni-tion. In Proc. EUROSPEECH, volume 1, pages 537–540, Madrid, Spain, 1995.
[78] S. Katagiri, Biing-Hwang Juang, and Chin-Hui Lee. Pattern recognition usinga family of design algorithms based upon the generalized probabilistic descentmethod. Proc. IEEE, 11:2345–2373, Nov 1998.
[79] Wolfgang Macherey, Lars Haferkamp, Ralf Schlöuter, and Hermann Ney. In-vestigations on error minimizing training criteria for discriminative training inautomatic speech recognition. In Proc. INTERSPEECH, pages 2133–2136, Lis-bon, Portugal, 2005.
[80] Ralf Schlüter, Wolfgang Macherey, Boris Müller, and Hermann Ney. Com-parison of discriminative training criteria and optimization methods for speechrecognition. Speech Communication, 34(3):287–310, 2001.
[81] L. Mangu, E. Brill, and A. Stolcke. Finding consensus among words: Lattice-based word error minimization. In Proc. EUROSPEECH, pages 495–498, Bu-dapest, Hungary, 1999.
[82] L. Mangu, E. Brill, and A. Stolcke. Finding consensus in speech recognition:Word error minimization and other applications of confusion networks. ComputerSpeech and Language, 14(4):373–400, 2000.
[83] K.-F. Lee. Large Vocabulary Speaker-independent Continuous Speech Recog-nition: The SPHINX System. PhD thesis, Carnegie Mellon University, 1988.
[84] M. Hwang and X. Huang. Acoustic classification of phonetic hidden Markovmodels. In Proc. EUROSPEECH, Genova, Italy, 1991.
[85] L. Bahl, P. deSouza, P. Gopalakrishnan, D. Nahamoo, and M. Picheny. Deci-sion trees for phonological rules in continuous speech. In Proc. IEEE ICASSP,volume 1, pages 185– 188, Toronto, Canada, 1991.
[86] S. Young and P. Woodland. State clustering in HMM-based continuous speechrecognition. Computer Speech and Language, 8(4):369–384, 1994.

DRAFTBIBLIOGRAPHY 244

[87] N. Morgan and H. Bourlard. Continuous speech recognition: An introductionto the hybrid HMM/connectionist approach. IEEE Signal Processing Magazine,12(3):25–42, May 1995.
[88] E. Trentin and M. Gori. A survey of hybrid ANN/HMM models for automaticspeech recognition. Neurocomputing, 37(1-4):91–126, April 2001.
[89] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-lan Salakhutdinov. Dropout: A simple way to prevent neural networks fromoverfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.
[90] Chris M. Bishop. Training with noise is equivalent to tikhonov regularization.Neural Computation, 7(1):108–116, 1995.
[91] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,2016.
[92] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deepnetwork training by reducing internal covariate shift. CoRR, abs/1502.03167,2015.
[93] Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.

	Introduction
	Fundamental Mathematical Elements
	Information Theory for Machine Learning
	Variational Lower Bound (ELBO)

	Optimization
	Convex Functions
	Derivative
	Gradient Descent
	Examples

	Gradient Descent using Taylor's Series
	Gradient Descent Limitations
	Adaptive learning Rate

	Assignment

	Input Representation
	 Tabular Data Representation
	Text Representation
	Word Tokenization
	Character Tokenization
	WordPiece Tokenization

	Speech Representation
	Image Representation
	Video Representation

	Linear Regression Networks
	The model
	Learning problem
	Numerical solution

	Example
	Assignment

	Binary Classification Networks
	The model
	Learning Problem
	Classification Decision
	Evaluation
	F1 Curve and threshold tuning

	An Example
	Assignment

	Multiclass Classification Networks
	The model
	Learning problem
	Classification decision
	Example
	Assignment

	Multilabel Classification Networks
	Model
	Learning problem
	Evaluation
	 Decision Boundary Threshold Tuning
	Macro F1-Score

	Example
	Assignment

	Deep Neural Networks
	Motivation
	Model
	Learning via Backpropagation
	Forward Propagation
	Backward Propagation

	Example
	Assignment

	Convolutional Networks
	Motivation
	Convolutions
	Definition
	Examples of the 1D cross-correlation operations
	Examples of the 2D cross-correlation operations
	Examples of the 3D cross-correlation operations

	Resolution control (subsampling)
	Model and learning problem
	Convolutional layers
	Pooling layers

	An Example
	Assignments

	Recurrent Neural Networks
	Model
	Learning Problem
	The Difficulty of Training Simple RNN
	Long Short-Term Memory Networks
	Vanishing/Exploding Gradients with LSTMs

	Independently Recurrent Neural Network
	Bidirectional Recurrent Neural Networks
	An Example
	Assignments

	Attention Networks
	Scaled Dot-Product Similarity Measure
	Multi-head Self-Attention Networks
	Numerical Example for Self-Attention
	Masked Self-Attention

	Stacking Self-Attention Layers
	Position-wise Feed-Forward Network (FFN)

	The Transformer Model
	N-gram Language Modeling
	Neural Language Modeling
	Conditional Language Modeling

	Training and Inference for Encoder-Decoder Framework
	 Cross-Entropy Loss for Transformer Models
	 Inference for Transformer Models

	Assignment

	State Space Models
	Discrete-Time State Space Model
	Training SSMs

	HiPPO Initialization for S4 Models
	Selective State Space (S6) Models
	Bidirectional Mamba models

	Improvements based on Mamba

	Probablistic Learning
	Naïve Bayes Multiclass Classification
	Gaussian Models
	Properties of a Gaussian model
	Multivariate Gaussian models
	Learning Problem
	Gaussian Naïve Bayes Classifier

	Gaussian Mixture Models
	Learning Problem
	Gaussian Mixture Naïve Bayes Classifier
	Connection with K-means
	Connection with Deep Neural Networks

	Sequential Modeling using Hidden Markov Models
	Generative Parameter Estimation
	Discriminative Parameter Estimation

	Hybrid NN/HMM models

	Generalization
	Model Complexity
	Regularization
	L0 Regularization
	L1 Regularization (Lasso)
	 L2 Regularization (Ridge)
	Label Smoothing

	Dropout Regularization
	 Normalization
	Batch Normalization
	Layer Normalization
	Root Mean Square Normalization

	Cross-Validation
	 Data Augmentation
	Ensemble Methods

